Speaker
Adrian Perrig
Professor, ETH, Switzerland
Adrian Perrig is a Professor at the Department of Computer Science
at the Swiss Federal Institute of Technology (ETH) in Zürich,
Switzerland, where he leads the network security group. He is also a
Distinguished Fellow at CyLab, and an Adjunct Professor of Electrical
and Computer Engineering at Carnegie Mellon University. From 2002 to
2012, he was a Professor of Electrical and Computer Engineering,
Engineering and Public Policy, and Computer Science (courtesy) at
Carnegie Mellon University; From 2007 to 2012, he also served as the
technical director for Carnegie Mellon's Cybersecurity Laboratory
(CyLab). He earned his Ph.D. degree in Computer Science from Carnegie
Mellon University under the guidance of J. D. Tygar, and spent three
years during his Ph.D. degree at the University of California at
Berkeley. He received his B.Sc. degree in Computer Engineering from
the Swiss Federal Institute of Technology in Lausanne (EPFL). He is a
recipient of the NSF CAREER award in 2004, IBM faculty fellowships in
2004 and 2005, the Sloan research fellowship in 2006, the Security 7
award in the category of education by the Information Security
Magazine in 2009, the Benjamin Richard Teare teaching award in 2011,
and the ACM SIGSAC Outstanding Innovation Award in 2013. Adrian's
research revolves around building secure systems -- in particular
secure future Internet architectures.
Title: Towards a Next-generation Secure Internet Architecture
Abstract:
The Internet has been successful beyond even the most optimistic
expectations. It permeates and intertwines with almost all aspects
of our society and economy. The success of the Internet has created a
dependency on communication as many of the processes underpinning the
foundations of modern society would grind to a halt should
communication become unavailable. However, much to our dismay, the
current state of safety and availability of the Internet is far from
commensurate given its importance.
Although we cannot conclusively determine what the impact of a
1-minute, 1-hour, 1-day, or 1-week outage of Internet connectivity on
our society would be, anecdotal evidence indicates that even short
outages have a profound negative impact on governmental, economic, and
societal operations. To make matters worse, the Internet has not been
designed for high availability in the face of malicious actions by
adversaries. Recent patches to improve Internet security and
availability have been constrained by the current Internet
architecture, business models, and legal aspects. Moreover, there are
fundamental design decisions of the current Internet that inherently
complicate secure operation.
Given the diverse nature of constituents in today's Internet, another
important challenge is how to scale authentication of entities (e.g., AS
ownership for routing, name servers for DNS, or domains for TLS) to a
global environment. Currently prevalent PKI models (monopoly and
oligarchy) do not scale globally because mutually distrusting entities
cannot agree on a single trust root, and because everyday users cannot
evaluate the trustworthiness of each of the many root CAs in their
browsers.
To address these issues, we study the design of a next-generation
Internet architecture that is secure, available, and offers privacy by
design; that provides incentives for a transition to the new
architecture; and that considers economic and policy issues at the
design stage. Such a research environment offers a bonanza for
security researchers: a critically important problem space with a
medley of challenges to address, and unfettered freedom to think
creatively in the absence of limiting constraints. Once we know how
good a network could be, we can then engage in incorporating these
ideas into the current Internet or study strategies for transition to
a next-generation network.