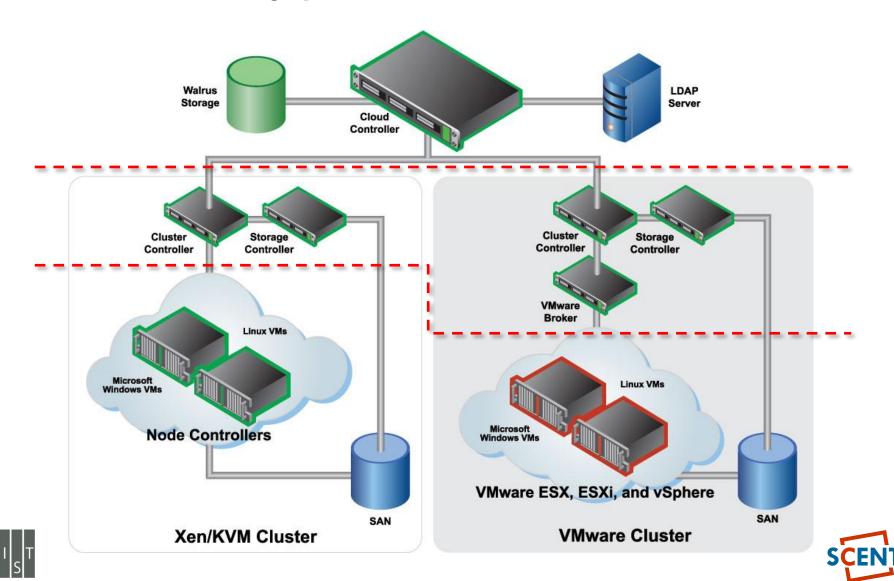
Early study on NEuca & GENICloud

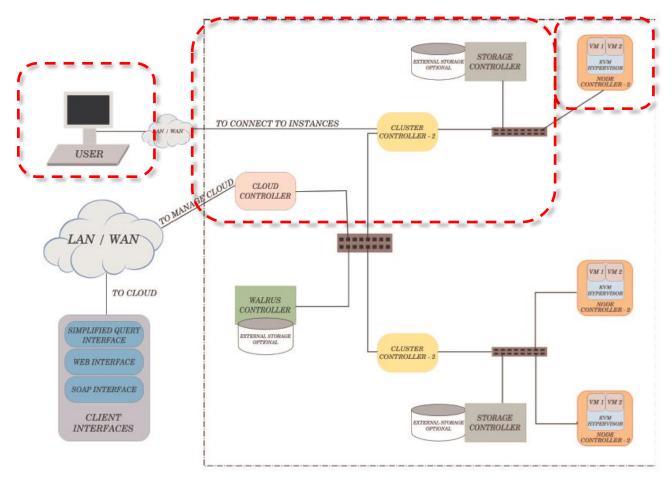
2011. 06. 02(Thu) SCENT Center, GIST ByungRae Cha

Agenda

- Eucalyptus
 - Eucalyptus Architecture
- GENICloud
 - Why PlanetLab and the Cloud?
 - GENICloud Architecture
 - Key Assumption of GENICloud
 - Milestones of GENICloud
- NEuca
 - Canonical NEuca network configuration


Eucalyptus

- Cloud Computing
 - Cloud computing is the access to computers and their functionality via the Internet or a local area network
 - X-as a Service: IaaS, PaaS, SaaS
 - Cloud Types: Public Cloud, Private Cloud, and Hybrid Cloud
 - Advantages: Self-service provisioning, Scalability, Reliability and faulttolerance, Optimization/Consolidation, QoS, Well defined API, As-needed availability, ...
 - Gartner Group [1], NIST [2], CSA [3], ENISA [4]
- Eucalyptus: Open Source Cloud Platform [5]
 - Cloud Controller: high-level resource scheduling, system accounting, and web interface to outside
 - Walrus Storage: bucket-based storage
 - Cluster Controller: cluster-level scheduling and network control
 - Storage Controller: Elastic Block Store-style block-based storage
 - Node Controller: controlling the hypervisor



Eucalyptus Architecture

Eucalyptus - UEC

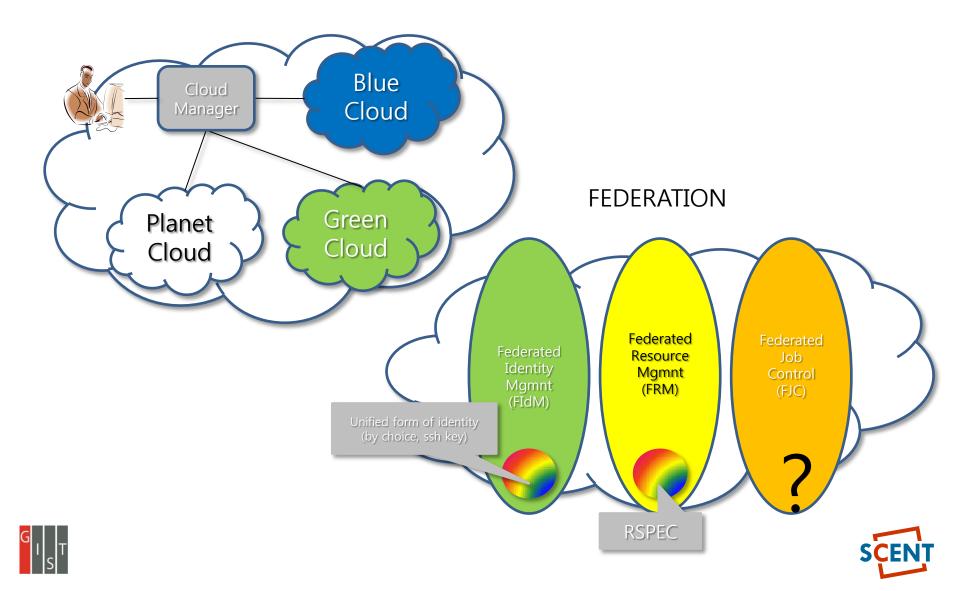
• Ubuntu Enterprise Cloud

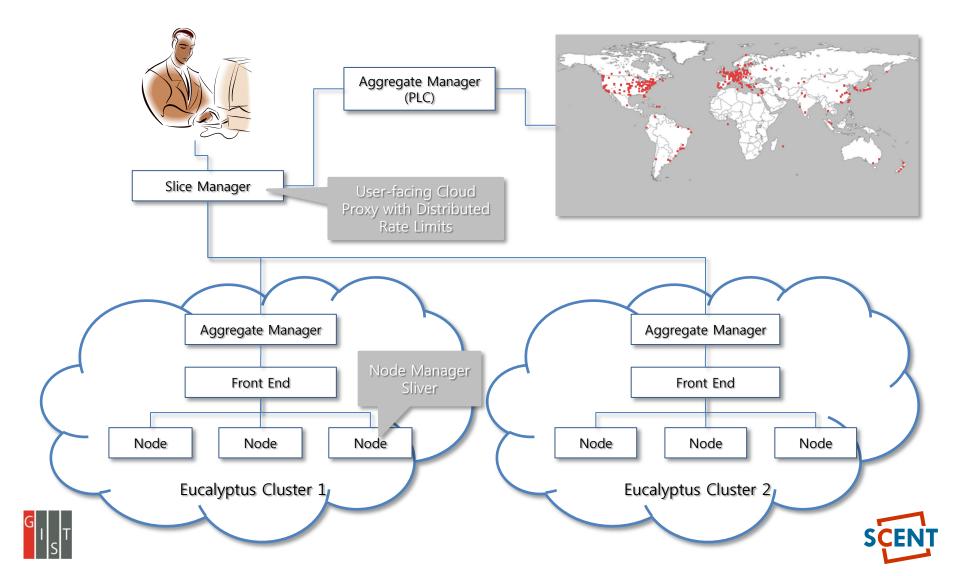
GENICloud

- GENICloud ProtoGENI
 - GENI/Eucalyptus Federated Resource Allocation a.k.a. GENICloud
- Scope
 - Envisage
 - Researchers constructing, deploying, and executing experiments on a variety of test infrastructures
 - simultaneous use of both widely distributed sensing and actuating nodes and analysis nodes in large-scale cloud clusters
 - Eucalyptus
 - Open-source software for building a cloud computing infrastructure.
 - The GENICloud project
 - Build a GENI federation interface for compute clusters running Eucalyptus
 - allow Eucalyptus clusters to federate via the Slice-based Federation Architecture (SFA)
 - spanning PlanetLab and multiple Eucalyptus
 - Anticipates devoting approximately 32 nodes at the HP Labs in order to gather data on cluster usage and resource usage

WHY PLANETLAB AND THE CLOUD?

• Internet:


- set of standards and protocols which permit interconnection of independently-administered networks
- Network of networks
- Intercloud


- Term due to Greg Papadopoulos, defining infrastructure of 2010's and beyond
- Set of standards and protocols which permit interconnection of independently administered clouds

		PlanetLab Facilities	Cloud
	Strengths	 Broad global reach Large (aggregate) bandwidth and low latency to everywhere 	ge chunks of computation available
	Weakness	Not much computation available anywhere	 P Jwidth limited to a few centers Latency variable
Ι		Network Virtualization	Computing Virtualization

ROLE OF THE CLOUD MANAGER

GENICloud Architecture

Key Assumption of GENICloud

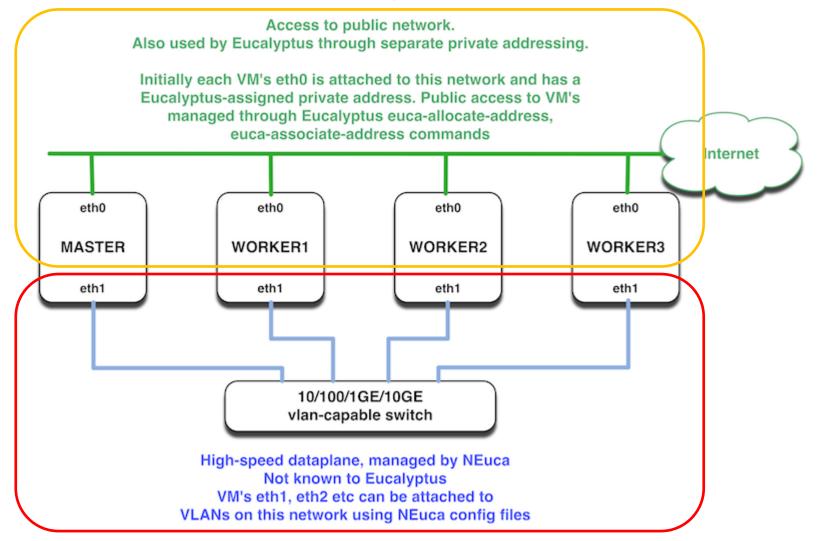
- Each facility implements Slice-Based Facility Interface
 - Slice Facility Architecture
 - Means of creating/allocating slices
 - Authorization by sshkey (GID)
 - Delegation primitive (Create/instantiate slices, Upload images to slices, Execute jobs on slices, Cannot subdelegate)
 - Explicit costs/resource allocation primitives: Need to be able to control costs for the developer
- GENI standard for control frameworks
- Standard, unified means of allocating
 - Virtual machines at each layer of the stack ("slivers")
 - Networks/sets of virtual machines ("slices")
- Already supported by PlanetLab, ORCA based on Eucalyptus -> GEC 11

Milestones of GENICloud

- GENICloud S2.a Demo. at GEC7
 - Demonstrate the ability to configure slices on a Eucalyptus cluster using the SFA command-line tools.
 - Only support the "light" federation model and operate on a basic Eucalyptus RSpec resembling the PlanetLab Rspec
- GENICloud S2.b Plan for GUI
- GENICloud S2.c Demo. at GEC8
 - Demonstrate the ability to configure slices on multiple Eucalyptus clusters using a basic GUI.
 - Support both the light and full federation models
 - Eucalyptus Rspec is extended to enable the user to specify the disk image to load on a particular sliver and the virtual networking mode to use
- GENICloud S2.d Eucalyptus aggregate manager available to experimenters
 - Make Eucalyptus clusters available to GENI experimenters using the PlanetLab

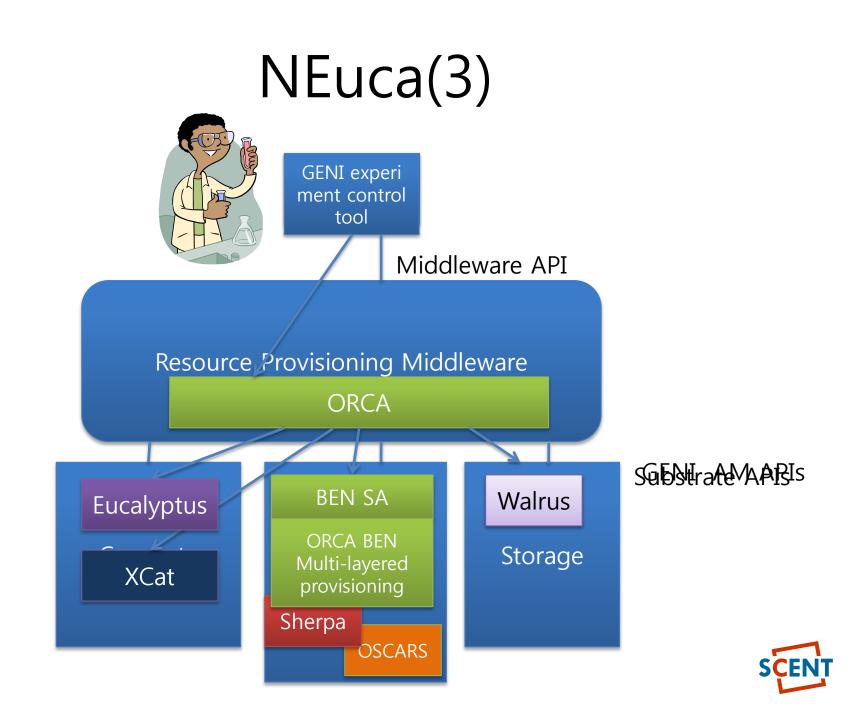
Milestones of GENICloud(2)

- GENICloud S3.a Demo. at GEC9
 - Demonstrate the use of GENICloud by a TransCoding application
- GENICloud S3.b Demo. at GEC10
 - Demonstration of GENICloud integration with GENI(implement the GENI API and recognize GENI credentials issued by GENI clearinghouses)
- GENICloud S3.c Demo. of the operational GENICloud aggregate and outreach at GEC11



NEuca

- NEuca [7] ORCA
 - Network to Extensions to Eucalyptus
 - set of patches for Eucalyptus and guest configuration scripts
 - enhance the functionality of a private Eucalyptus cloud
 - without interfering with its traditional operations
 - NEuca allows VMs instantiated via Eucalyptus to
 - Have additional network interfaces, not controlled by Eucalyptus
 - Perform arbitrary post-boot actions using shell scripts
 - Install
 - Installing Eucalyptus with NEuca patches (currently Eucalyptus 2.0.0 and 2.0.2)
 - Installing NEuca tools onto the images that the VMs will use in Eucalyptus


Canonical NEuca network configuration

NEuca(2)

- NEuca
 - Advantages:
 - Published remotable interfaces
 - Multi-use infrastructure: Utility computing, Cloud applications, IaaS, Experimentation
 - Makes easier to convince substrate owners to contribute resources to GENI
 - Key requirement
 - Ability to embed a topology into one or more cloud sites
 - Possible with XCat
 - Not possible with stock Eucalyptus
 - Usage
 - Create an .INI-formatted configuration file
 - Pass to the instance using –user-data-file option
 - File contains
 - Global definitions
 - Guest interface configuration
 - Shell script to be executed post-boot
 - Other extensions in near future (SSH proxy options)
 - NEuca-py tools installed on the image can help retrieve the information for use by applications

Reference

- 1. Gartner Group
- 2. NIST, http://www.nist.gov/
- 3. CSA, https://cloudsecurityalliance.org/
- 4. ENISA, http://www.enisa.europa.eu/
- 5. Eucalyptus, http://www.eucalyptus.com
- 6. GENICloud,
- 7. NEuca Network Extensions to Eucalyptus, http://groups.geni.net/geni/attachment/wiki/Gec9ControlFrameworkAgenda/GEC9-NEuca.pptx
- 8. ORCA Status Report for Spiral 2 and Roadmap for Spiral 3 *GEC9,* http://groups.geni.net/geni/attachment/wiki/Gec9ClusterDAgenda/GEC9-cluster-D-ORCA-overview.pptx

