PacketShader 2.0:
Design Considerations

FIF Testbed WG Meeting
2011.8.10. 3-6pm =Ll 5228 4922
Sue Moon
in collaboration with:

Joongi Kim, Seonggu Huh, Sangjin Han, Keon Jang,

KyoungSoo Park *

Advanced Networking Lab, CS, KAIST

*Networked and Distributed Computing Systems tab, EE, KAISTKNST

PacketShader 1.0

= GPUs
a great opportunity for fast packet processing

= v1.0: more of a forwarding engine
Optimized packet I/O + GPU acceleration

scalable with
 # of multi-core CPUs, GPUs, and high-speed NICs

= Current Prototype
Supports IPv4, IPv6, OpenFlow, and IPsec
40 Gbps performance on a single PC

KAIST

CPU BOTTLENECK

KAIST

Per-Packet CPU Cycles for 10G

IPv4 | 1,200 + | 600 = 1,800 cycles
| Packet I/0 IPv4 lookup
CYCCTS d IPv6 | 1,200 + | 1,600 = 2,800
neede Packet 1/0 IPv6 lookup
IPsec | 1,200 + |5,400 N S - 6,600
Packet I/O Encryption and hashing
Your 1,400 cycles
bUdget 10G, min-sized packets, dual quad-core 2.66GHz CPUs

(in x86, cycle numbers are from RouteBricks [Dobrescu09] and ours)

4 KAIST

PacketShader Part 1: I/O Optimization

1,200 ¥ | 600 = 1,800 cycles
|
Packet I/0 : IPv4 lookup
1,200 + | 1,600 = 2,800
Packet I/O ! IPV6 lookup
|
1,200 + 5,400 N S = 6,600
Packet I/0 I Encryption and hashing
= 1,200 reduced to 200 cycles
_____________________ per packet
Losrnarnarenasnaaes = Main ideas
Packet I/0O

Huge packet buffer
Batch processing

5 KAIST

PacketShader Part 2. GPU Offloading

Packet I/O

= GPU Offloading for
Memory-intensive or

Compute-intensive
operations

. |
+ | 600 :
. IPv4 lookup |
+ | 1,600

I TPv6 lookup

Jlg 5,400 N S

i Encryption and hashing

6 KAIST

OPTIMIZING
PACKET 1/O ENGINE

KAIST

User-space Packet Processing

Packet processing in kernel is bad Processing in user-space is good

= Kernel has higher scheduling priority; Rich, friendly development and
overloaded kernel may starve user- debugging environment
level processes.

_ « Seamless integration with 3 party
* Some CPU extensions such as MMX libraries such as CUDA or OpenSSL

and SSE are not available.

- Easy to develop virtualized data

= Buggy kernel code causes irreversible plane

damage to the system.

But packet processing in user-space is known to be 3x times slower!
=» Our solution: (1) batching + (2) better core-queue mapping

KAIST

Inefficiencies of Linux Network Stack

Functional bins % of cycles

skb (de)allocation 8.0%

Compact metadata = skb initialization 4.9%
Batch processing =——» NIC device driver 13.3% Huge packet buffer

Software prefetch =——» Compulsory cache misses 13.8%

Memory subsystem 50.2%

Others 9.8%

Total 100.0%

CPU cycle breakdown in packet RX

KAIST

Huge Packet Buffer
eliminates per-packet buffer allocation cost

RX queue

L

AN

[

T

Packet data buffer

skb

Linux per-packet buffer allocation

RX queue

Buffer for packet data

Buffer for metadata

Our huge packet buffer scheme

10

KAIST

Batch Processing
amortizes per-packet bookkeeping costs.

= Simple queuing theory:
input traffic > capacity of the system
- RX queues fills up

= Dequeue and process multiple packets
It improves overall throughput

KAIST

Effect of Batched Packet Processing
64-byte packets, two 10G ports, one CPU core

20
18
16
14
12
10

Throughput (Gbps)

”—————-—_——‘

Forwarding

Number of packets in batch

%4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 o4

Without batching: 1.6 Gbps for RX, 2.1 Gbps for TX, 0.8 Gbps for forwarding

=» batching is essential!

12 KAIST

NUMA -Aware RSS

= RSS (Receive-Side Scaling) default behavior
RSS-enabled NICs distribute incoming packets into all CPU cores.

= To save bandwidth between NUMA nodes, we prevent packets from
crossing the NUMA boundary.

CPU cores

IOH

IOH

NIC

D

13

CPU cores

IOH IOH

,}

NIC

T

KAIST

Multiqueue-Aware User-space Packet I/O

Kernel User
NSO ||||\|||| Thread 0 | Core 0 . _
IIIT, Existing scheme (ex. libpcap):
— TTIRA Per-NIC queues cause
NIC2 TT] |/.,‘| [TT% | Thread 1 | cCore 1 Icacli]e bouncing and
SNTTTT ock contention
Per-NIC
RX queues queues
(shared by
multiple cores)
Kernel User
MY RO S TIIT Thread 0 | core 0 _
< STIIT Our multiqueue-aware scheme:
NICt RO X Memory access is partitioned
INENE between cores
NIC2 TII1L Thread 1 ~ Core 1

RX queues

14 KAIST

GPU FOR PACKET PROCESSING

KAIST

Advantages of GPU for Packet Processing

1. Raw computation power
2. Memory access latency
3. Memory bandwidth

= Comparison between
Intel X5550 CPU
NVIDIA GTX480 GPU

KAIST

(1/3) Raw Computation Power

= Compute-intensive operations in software routers

Hashing, encryption, pattern matching, network coding,
compression, etc.

GPU can help!

Instructions/sec

Wy i g
Ly
&y

<

CPU: 43x109 < GPU: 672 x10°

= 2.66 (GHz) x = 1.4 (GHz) x
4 (# of cores) x 480 (# of cores)
4 (4-way superscalar)

17

KAIST

(2/3) Memory Access Latency

= Software router - lots of cache misses
GPU can effectively hide memory latency

GPU core

Cache Cache
miss miss
I

U, U2
Switch to Switch to
Thread 2 Thread 3

18

KAIST

(3/3) Memory Bandwidth

CPU’s memory bandwidth (theoretical): 32 GB/s

19 KAIST

(3/3) Memory Bandwidth
3. TX:

2. RX: CPU - RAM

RAM = CPU _l l

4. TX:
RAM - NIC

1. RX:
NIC - RAM

CPU’s memory bandwidth (empirical) < 25 GB/s

20 KAIST

(3/3) Memory Bandwidth

Your budget for packet processing can be less 10 GB/s

21 KAIST

(3/3) Memory Bandwidth

174GB/s

s memory bandwidth

14

GPU

KAIST

22

Results (w/ 64B packets)

mCPU-only mCPU+GPU

39.2 38.2

AN
()
|

Throughput (Gbps)

IPv4 IPV6 OpenFlow IPsec

GPU speedup 1.4x 4.8X 2.1x 3.5%

23 KAIST

Results

Year Ref. H/W IPv4
Throughput
2008 Egi et al. Two quad-core CPUs 3.5 Gbps
2008 “Enhanced SR" Two quad-core CPUs 4.2 Gbps
Bolla et al. ~ Kernel
2009 "RouteBricks” Two quad-core CPUs 8.7 Gbps
Dobrescu et a/ (2.8 GHz)
2010 PacketShader Two quad-core CPUs 28.2 Gbps |~
(CPU-only) (2.66 GHz)
2010 PacketShader Two quad-core CPUs 39.2 Gbps | [User

(CPU+GPU) + two GPUs

& _KAIST

What PacketShader is not

= Working router
Control plane missing
Microbenchmarked for only single appllications (protocols)
Basic protocols not implemented (e.g. ARP, ICMP, ...)

KAIST

PacketShader 2.0

= Control plane integration
Dynamic routing protocols with Quagga or XORP

= Opportunistic offloading
CPU at low load
GPU at high load

= Multi-functional, modular programming environment
Integration with Click? [Kohler99]

KAIST

#1 Control-plane Integration

ipv4route, IPSec, OpenFlow, ...

Forwarding Forwarding
User engine table Existing software
space (using GPUs) fREIRER S routing frameworks
“ (e.g. XORP, Quagga)
| R
route
Packet API updates
-7 77T Slow-path™% — T~ T~ -7 ""i """
Fast-path Linux TCP/IP stack
Kernel Kernel routing table
space

Packet I/O driver

KAIST

Double Buffering

Inside GPU

100KUP continues:-

updaﬂ

forwarding tables

28 M

#2 Opportunistic Offloading

= Implemented in SSLShader, our GPU-based SSL accelerator

= Threshold-based switching between CPU-only and
CPU+GPU operations

KAIST

#3 Multi-functional , modular programming
environment

KAIST

#3 Multi-functional, modular programming
environment

. —> Chunk
= Cascading — - ®> Subchunk
Recv Filter

Gathering queue
LV_________.i D Schedulable task

0
1
G
I 1 I
: !
Module 1 f=-! L Y :
: * : |
1
I Module 2 == I
; , T
! ! Module N |
I I : '
v v v v
Send
1 1] T T
v v v : !
oo
J 4 s slow path
- (e.g. Linux
NIC | | NIC | | NIC | (drop) TCP/IP stack)

KAIST

Factors behind PacketShader 1.0 Performance

= Batching, batching, batching!

The IO engine (modified NIC driver) uses continuous huge packet
buffers called “chunks’.

The user-level process pijpelines multiple chunks.
The GPU processes multiple chunks /n parallel.

= Hardware-aware optimizations
No NUMA node crossing
Minimized cache conflicts among multi-cores

KAIST

Remaining Challenges
= 100+ Gbps speed

= Stateful processing
Intrusion detection systems / firewalls

KAIST

Review of I/O Capacity for 100+ Gbps

= QuickPath Interconnect (QPI)

CPU socket-to-socket link for remote memory
IOH-to-IOH link for I/O traffic
CPU-to-IOH for CPU to peripheral connections

= Today’s QPI link
12.8 GB/s or 102.4 Gbps
= Sandy Bridge
On recall at the moment
Expected to boost performance to 60 Gbps w/o modification

KAIST

Review of Memory B/W for 100+ Gbps

= For 100Gbps forwarding we need 400 Gbps in memory
bandwidth + bookkeeping

= Current configuration
triple-channel DDR3 1,333 MHz
32 GB/s per core (theoretical) and 17.9GB/s (empirical)

= On NUMA system

More nodes
Careful placement...

KAIST

Future Work

= Consider other architectures
AMD’s APU
Tilera’s tiled many-core chips
Intel’s MIC

= Become a platform for all new FIA architectures
Advantage over NetFPGA, ServerSwitch, ATCA solutions

= Who in Korea will take it to full development?

KAIST

Positioning

= Commercial competitor?
Core routers with 100+ Tbps capacity? No.
Edge routers with 100+ Gbps capacity with complex features?
Maybe
Experimental platforms?
» NetFGPA
« ServerSwitch
» RouteBricks
« ATCA-based boxes

KAIST

Collaboration opportunities with US

PlanetLab #1
OpenFlow / NetFPGA initiatives #1
NSF GENI

NSF FIA
XIA
NDN
MobilityFirst
Nebula

KAIST

A Collaboration opportunity with EU: OnelLab?2

= Extension of OnelLab
= Open call by 2011.9.15.

= Work Packages
Control Plane Interoperability
Experimental Plane Interoperability
Wireless Testbeds
Wired Testbeds

= Private PlanetLab Korea (PPK) already federated

= What more needs to be done?
Long-term commitment
Designate a technical correspondent
Join as a partner by September
Apply for support to MKE or KCC

KAIST

Venues for publicity opportunities

= ACM SIGCOMM conferences / workshops / poster sessions
= SOSP/OSDI, EuroSys, APSys

= ACM CCR (6pg only, 3mon turn-around)

= USENIX ;login

= GENI meetings
= EU FP7 meetings
= AsiaFI summer school, CFI conference

KAIST

For more details
https://shader.kaist.edu/

QUESTIONS?

THANK YOU!

41

KAIST

http://shader.kaist.edu/sslshader
http://shader.kaist.edu/sslshader

