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PacketShader 1.0

 GPUs

 a great opportunity for fast packet processing

 v1.0: more of a forwarding engine

 Optimized packet I/O + GPU acceleration

 scalable with

• # of multi-core CPUs, GPUs, and high-speed NICs

 Current Prototype

 Supports IPv4, IPv6, OpenFlow, and IPsec

 40 Gbps performance on a single PC
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CPU BOTTLENECK
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Per-Packet CPU Cycles for 10G
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(in x86, cycle numbers are from RouteBricks [Dobrescu09] and ours)



PacketShader Part 1: I/O Optimization
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 1,200 reduced to 200 cycles 
per packet

 Main ideas

 Huge packet buffer

 Batch processing
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PacketShader Part 2: GPU Offloading
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 GPU Offloading for

 Memory-intensive or

 Compute-intensive 
operations
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OPTIMIZING
PACKET I/O ENGINE
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User-space Packet Processing

Packet processing in kernel is bad

 Kernel has higher scheduling priority; 
overloaded kernel may starve user-
level processes.

 Some CPU extensions such as MMX 
and SSE are not available.

 Buggy kernel code causes irreversible 
damage to the system.
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Processing in user-space is good

• Rich, friendly development and 
debugging environment

• Seamless integration with 3rd party 
libraries such as CUDA or OpenSSL

• Easy to develop virtualized data 
plane.

But packet processing in user-space is known to be 3x times slower!

 Our solution: (1) batching + (2) better core-queue mapping



Inefficiencies of Linux Network Stack 

CPU cycle breakdown in packet RX

Software prefetch

Huge packet buffer

Compact metadata

Batch processing



Huge Packet Buffer
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eliminates per-packet buffer allocation cost

Linux per-packet buffer allocation

Our huge packet buffer scheme



Batch Processing

 Simple queuing theory:

 input traffic > capacity of the system 

  RX queues fills up

 Dequeue and process multiple packets

 It improves overall throughput
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amortizes per-packet bookkeeping costs.



Effect of Batched Packet Processing
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64-byte packets, two 10G ports, one CPU core

Without batching: 1.6 Gbps for RX, 2.1 Gbps for TX, 0.8 Gbps for forwarding

 batching is essential!



NUMA –Aware RSS

 RSS (Receive-Side Scaling) default behavior

 RSS-enabled NICs distribute incoming packets into all CPU cores.

 To save bandwidth between NUMA nodes, we prevent packets from 
crossing the NUMA boundary.
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Multiqueue-Aware User-space Packet I/O
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Our multiqueue-aware scheme:

Memory access is partitioned 
between cores

Existing scheme (ex. libpcap):

Per-NIC queues cause 
cache bouncing and
lock contention



GPU FOR PACKET PROCESSING
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Advantages of GPU for Packet Processing

1. Raw computation power

2. Memory access latency

3. Memory bandwidth

 Comparison between

 Intel X5550 CPU

 NVIDIA GTX480 GPU
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(1/3) Raw Computation Power

 Compute-intensive operations in software routers

 Hashing, encryption, pattern matching, network coding, 
compression, etc.

 GPU can help!
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CPU: 43×109

= 2.66 (GHz) ×
4 (# of cores) ×

4 (4-way superscalar)

GPU: 672×109

= 1.4 (GHz) ×
480 (# of cores)

Instructions/sec

<



(2/3) Memory Access Latency

 Software router  lots of cache misses

 GPU can effectively hide memory latency
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GPU core

Cache
miss

Cache
miss

Switch to 
Thread 2

Switch to 
Thread 3



(3/3) Memory Bandwidth
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CPU’s memory bandwidth (theoretical): 32 GB/s 



(3/3) Memory Bandwidth
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CPU’s memory bandwidth (empirical) < 25 GB/s 

4. TX: 
RAM  NIC

3. TX: 
CPU  RAM2. RX: 

RAM  CPU

1. RX: 
NIC  RAM



(3/3) Memory Bandwidth
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Your budget for packet processing can be less 10 GB/s 



(3/3) Memory Bandwidth
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Your budget for packet processing can be less 10 GB/s

GPU’s memory bandwidth: 174GB/s 



Results (w/ 64B packets)
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Year Ref. H/W IPv4
Throughput

2008 Egi et al. Two quad-core CPUs 3.5 Gbps

2008 “Enhanced SR”
Bolla et al.

Two quad-core CPUs 4.2 Gbps

2009 “RouteBricks”
Dobrescu et al.

Two quad-core CPUs
(2.8 GHz)

8.7 Gbps

2010 PacketShader
(CPU-only)

Two quad-core CPUs
(2.66 GHz)

28.2 Gbps

2010 PacketShader
(CPU+GPU)

Two quad-core CPUs
+ two GPUs

39.2 Gbps

Kernel

User

Results



What PacketShader is not

 Working router

 Control plane missing

 Microbenchmarked for only single appllications (protocols)

 Basic protocols not implemented (e.g. ARP, ICMP, ...)
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PacketShader 2.0

 Control plane integration

 Dynamic routing protocols with Quagga or XORP

 Opportunistic offloading

 CPU at low load

 GPU at high load

 Multi-functional, modular programming environment

 Integration with Click? [Kohler99]
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#1 Control-plane Integration

Packet I/O driver

Linux TCP/IP stack

Packet API

ipv4route, IPSec, OpenFlow, …

Fast-path

Slow-path

Kernel routing table

Existing software 
routing frameworks
(e.g. XORP, Quagga)

Forwarding 
table 

manager

Forwarding 
engine

(using GPUs)

User 
space

Kernel 
space

route 
updates



Double Buffering

28

Inside GPU

forwarding tables



#2 Opportunistic Offloading

 Implemented in SSLShader, our GPU-based SSL accelerator

 Threshold-based switching between CPU-only and 
CPU+GPU operations
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#3 Multi-functional , modular programming 

environment
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#3 Multi-functional, modular programming 

environment
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(e.g. Linux 
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Gathering queue

Schedulable task
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 Cascading



 Batching, batching, batching!

 The IO engine (modified NIC driver) uses continuous huge packet 
buffers called “chunks”.

 The user-level process pipelines multiple chunks.

 The GPU processes multiple chunks in parallel.

 Hardware-aware optimizations

 No NUMA node crossing

 Minimized cache conflicts among multi-cores

Factors behind PacketShader 1.0 Performance



Remaining Challenges

 100+ Gbps speed

 Stateful processing

 Intrusion detection systems / firewalls
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Review of I/O Capacity for 100+ Gbps

 QuickPath Interconnect (QPI)

 CPU socket-to-socket link for remote memory

 IOH-to-IOH link for I/O traffic

 CPU-to-IOH for CPU to peripheral connections

 Today’s QPI link

 12.8 GB/s or 102.4 Gbps

 Sandy Bridge

 On recall at the moment

 Expected to boost performance to 60 Gbps w/o modification



Review of Memory B/W for 100+ Gbps

 For 100Gbps forwarding we need 400 Gbps in memory 
bandwidth + bookkeeping

 Current configuration

 triple-channel DDR3 1,333 MHz

 32 GB/s per core (theoretical) and 17.9GB/s (empirical)

 On NUMA system 

 More nodes

 Careful placement...



Future Work

 Consider other architectures

 AMD’s APU

 Tilera’s tiled many-core chips

 Intel’s MIC

 Become a platform for all new FIA architectures

 Advantage over NetFPGA, ServerSwitch, ATCA solutions

 Who in Korea will take it to full development?
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Positioning

 Commercial competitor?

 Core routers with 100+ Tbps capacity? No.

 Edge routers with 100+ Gbps capacity with complex features? 
Maybe

 Experimental platforms?

• NetFGPA

• ServerSwitch

• RouteBricks

• ATCA-based boxes
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Collaboration opportunities with US

 PlanetLab #1

 OpenFlow / NetFPGA initiatives #1

 NSF GENI

 NSF FIA

 XIA

 NDN

 MobilityFirst

 Nebula



A Collaboration opportunity with EU: OneLab2

 Extension of OneLab

 Open call by 2011.9.15.

 Work Packages
 Control Plane Interoperability

 Experimental Plane Interoperability

 Wireless Testbeds

 Wired Testbeds

 Private PlanetLab Korea (PPK) already federated

 What more needs to be done?
 Long-term commitment

 Designate a technical correspondent

 Join as a partner by September

 Apply for support to MKE or KCC
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Venues for publicity opportunities

 ACM SIGCOMM conferences / workshops / poster sessions

 SOSP/OSDI, EuroSys, APSys

 ACM CCR (6pg only, 3mon turn-around)

 USENIX ;login

 GENI meetings

 EU FP7 meetings

 AsiaFI summer school, CFI conference



QUESTIONS?

THANK YOU!

For more details

https://shader.kaist.edu/
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http://shader.kaist.edu/sslshader
http://shader.kaist.edu/sslshader

