
PacketShader 2.0:
Design Considerations

FIF Testbed WG Meeting

2011.8.10. 3-6pm 충남대 공학2관 492호

Sue Moon

in collaboration with:

Joongi Kim, Seonggu Huh, Sangjin Han, Keon Jang, 
KyoungSoo Park ‡

Advanced Networking Lab, CS, KAIST
‡ Networked and Distributed Computing Systems Lab, EE, KAIST



PacketShader 1.0

 GPUs

 a great opportunity for fast packet processing

 v1.0: more of a forwarding engine

 Optimized packet I/O + GPU acceleration

 scalable with

• # of multi-core CPUs, GPUs, and high-speed NICs

 Current Prototype

 Supports IPv4, IPv6, OpenFlow, and IPsec

 40 Gbps performance on a single PC

2



CPU BOTTLENECK

3



Per-Packet CPU Cycles for 10G

4

1,200 600

1,200 1,600
Cycles 
needed

Packet I/O IPv4 lookup

= 1,800 cycles

= 2,800

Your
budget

1,400 cycles

10G, min-sized packets, dual quad-core 2.66GHz CPUs

5,4001,200 … = 6,600

Packet I/O IPv6 lookup

Packet I/O Encryption and hashing

IPv4

IPv6

IPsec

+

+

+

(in x86, cycle numbers are from RouteBricks [Dobrescu09] and ours)



PacketShader Part 1: I/O Optimization

5

Packet I/O

Packet I/O

Packet I/O

Packet I/O

 1,200 reduced to 200 cycles 
per packet

 Main ideas

 Huge packet buffer

 Batch processing

600

1,600

IPv4 lookup

= 1,800 cycles

= 2,800

5,400 … = 6,600

IPv6 lookup

Encryption and hashing

+

+

+

1,200

1,200

1,200



PacketShader Part 2: GPU Offloading

6

Packet I/O

Packet I/O

Packet I/O

 GPU Offloading for

 Memory-intensive or

 Compute-intensive 
operations

600

1,600

IPv4 lookup

5,400 …

IPv6 lookup

Encryption and hashing

+

+

+



OPTIMIZING
PACKET I/O ENGINE

7



User-space Packet Processing

Packet processing in kernel is bad

 Kernel has higher scheduling priority; 
overloaded kernel may starve user-
level processes.

 Some CPU extensions such as MMX 
and SSE are not available.

 Buggy kernel code causes irreversible 
damage to the system.

8

Processing in user-space is good

• Rich, friendly development and 
debugging environment

• Seamless integration with 3rd party 
libraries such as CUDA or OpenSSL

• Easy to develop virtualized data 
plane.

But packet processing in user-space is known to be 3x times slower!

 Our solution: (1) batching + (2) better core-queue mapping



Inefficiencies of Linux Network Stack 

CPU cycle breakdown in packet RX

Software prefetch

Huge packet buffer

Compact metadata

Batch processing



Huge Packet Buffer

10

eliminates per-packet buffer allocation cost

Linux per-packet buffer allocation

Our huge packet buffer scheme



Batch Processing

 Simple queuing theory:

 input traffic > capacity of the system 

  RX queues fills up

 Dequeue and process multiple packets

 It improves overall throughput

11

amortizes per-packet bookkeeping costs.



Effect of Batched Packet Processing

12

64-byte packets, two 10G ports, one CPU core

Without batching: 1.6 Gbps for RX, 2.1 Gbps for TX, 0.8 Gbps for forwarding

 batching is essential!



NUMA –Aware RSS

 RSS (Receive-Side Scaling) default behavior

 RSS-enabled NICs distribute incoming packets into all CPU cores.

 To save bandwidth between NUMA nodes, we prevent packets from 
crossing the NUMA boundary.

13

IOH

NIC

IOH

NIC

CPU cores

IOH

NIC

IOH

NIC

CPU cores



Multiqueue-Aware User-space Packet I/O

14

Our multiqueue-aware scheme:

Memory access is partitioned 
between cores

Existing scheme (ex. libpcap):

Per-NIC queues cause 
cache bouncing and
lock contention



GPU FOR PACKET PROCESSING

15



Advantages of GPU for Packet Processing

1. Raw computation power

2. Memory access latency

3. Memory bandwidth

 Comparison between

 Intel X5550 CPU

 NVIDIA GTX480 GPU

16



(1/3) Raw Computation Power

 Compute-intensive operations in software routers

 Hashing, encryption, pattern matching, network coding, 
compression, etc.

 GPU can help!

17

CPU: 43×109

= 2.66 (GHz) ×
4 (# of cores) ×

4 (4-way superscalar)

GPU: 672×109

= 1.4 (GHz) ×
480 (# of cores)

Instructions/sec

<



(2/3) Memory Access Latency

 Software router  lots of cache misses

 GPU can effectively hide memory latency

18

GPU core

Cache
miss

Cache
miss

Switch to 
Thread 2

Switch to 
Thread 3



(3/3) Memory Bandwidth

19

CPU’s memory bandwidth (theoretical): 32 GB/s 



(3/3) Memory Bandwidth

20

CPU’s memory bandwidth (empirical) < 25 GB/s 

4. TX: 
RAM  NIC

3. TX: 
CPU  RAM2. RX: 

RAM  CPU

1. RX: 
NIC  RAM



(3/3) Memory Bandwidth

21

Your budget for packet processing can be less 10 GB/s 



(3/3) Memory Bandwidth

22

Your budget for packet processing can be less 10 GB/s

GPU’s memory bandwidth: 174GB/s 



Results (w/ 64B packets)

23

28.2

8

15.6

3

39.2 38.2

32

10.2

0

5

10

15

20

25

30

35

40

IPv4 IPv6 OpenFlow IPsec 

T
h

ro
u

g
h

p
u

t 
(G

b
p

s)

CPU-only CPU+GPU

1.4x 4.8x 2.1x 3.5xGPU speedup



24

Year Ref. H/W IPv4
Throughput

2008 Egi et al. Two quad-core CPUs 3.5 Gbps

2008 “Enhanced SR”
Bolla et al.

Two quad-core CPUs 4.2 Gbps

2009 “RouteBricks”
Dobrescu et al.

Two quad-core CPUs
(2.8 GHz)

8.7 Gbps

2010 PacketShader
(CPU-only)

Two quad-core CPUs
(2.66 GHz)

28.2 Gbps

2010 PacketShader
(CPU+GPU)

Two quad-core CPUs
+ two GPUs

39.2 Gbps

Kernel

User

Results



What PacketShader is not

 Working router

 Control plane missing

 Microbenchmarked for only single appllications (protocols)

 Basic protocols not implemented (e.g. ARP, ICMP, ...)

25



PacketShader 2.0

 Control plane integration

 Dynamic routing protocols with Quagga or XORP

 Opportunistic offloading

 CPU at low load

 GPU at high load

 Multi-functional, modular programming environment

 Integration with Click? [Kohler99]

26



#1 Control-plane Integration

Packet I/O driver

Linux TCP/IP stack

Packet API

ipv4route, IPSec, OpenFlow, …

Fast-path

Slow-path

Kernel routing table

Existing software 
routing frameworks
(e.g. XORP, Quagga)

Forwarding 
table 

manager

Forwarding 
engine

(using GPUs)

User 
space

Kernel 
space

route 
updates



Double Buffering

28

Inside GPU

forwarding tables



#2 Opportunistic Offloading

 Implemented in SSLShader, our GPU-based SSL accelerator

 Threshold-based switching between CPU-only and 
CPU+GPU operations

29



#3 Multi-functional , modular programming 

environment

30



#3 Multi-functional, modular programming 

environment

NIC

Recv

Send

?

Module 1

?

Module 2

?

Module N

NIC NIC

NIC NIC NIC

slow path
(e.g. Linux 

TCP/IP stack)(drop)

?

Chunk

Subchunk

Filter

Gathering queue

Schedulable task

Y

N

N

NY

Y

 Cascading



 Batching, batching, batching!

 The IO engine (modified NIC driver) uses continuous huge packet 
buffers called “chunks”.

 The user-level process pipelines multiple chunks.

 The GPU processes multiple chunks in parallel.

 Hardware-aware optimizations

 No NUMA node crossing

 Minimized cache conflicts among multi-cores

Factors behind PacketShader 1.0 Performance



Remaining Challenges

 100+ Gbps speed

 Stateful processing

 Intrusion detection systems / firewalls

33



Review of I/O Capacity for 100+ Gbps

 QuickPath Interconnect (QPI)

 CPU socket-to-socket link for remote memory

 IOH-to-IOH link for I/O traffic

 CPU-to-IOH for CPU to peripheral connections

 Today’s QPI link

 12.8 GB/s or 102.4 Gbps

 Sandy Bridge

 On recall at the moment

 Expected to boost performance to 60 Gbps w/o modification



Review of Memory B/W for 100+ Gbps

 For 100Gbps forwarding we need 400 Gbps in memory 
bandwidth + bookkeeping

 Current configuration

 triple-channel DDR3 1,333 MHz

 32 GB/s per core (theoretical) and 17.9GB/s (empirical)

 On NUMA system 

 More nodes

 Careful placement...



Future Work

 Consider other architectures

 AMD’s APU

 Tilera’s tiled many-core chips

 Intel’s MIC

 Become a platform for all new FIA architectures

 Advantage over NetFPGA, ServerSwitch, ATCA solutions

 Who in Korea will take it to full development?

36



Positioning

 Commercial competitor?

 Core routers with 100+ Tbps capacity? No.

 Edge routers with 100+ Gbps capacity with complex features? 
Maybe

 Experimental platforms?

• NetFGPA

• ServerSwitch

• RouteBricks

• ATCA-based boxes

37



Collaboration opportunities with US

 PlanetLab #1

 OpenFlow / NetFPGA initiatives #1

 NSF GENI

 NSF FIA

 XIA

 NDN

 MobilityFirst

 Nebula



A Collaboration opportunity with EU: OneLab2

 Extension of OneLab

 Open call by 2011.9.15.

 Work Packages
 Control Plane Interoperability

 Experimental Plane Interoperability

 Wireless Testbeds

 Wired Testbeds

 Private PlanetLab Korea (PPK) already federated

 What more needs to be done?
 Long-term commitment

 Designate a technical correspondent

 Join as a partner by September

 Apply for support to MKE or KCC

39



Venues for publicity opportunities

 ACM SIGCOMM conferences / workshops / poster sessions

 SOSP/OSDI, EuroSys, APSys

 ACM CCR (6pg only, 3mon turn-around)

 USENIX ;login

 GENI meetings

 EU FP7 meetings

 AsiaFI summer school, CFI conference



QUESTIONS?

THANK YOU!

For more details

https://shader.kaist.edu/

41

http://shader.kaist.edu/sslshader
http://shader.kaist.edu/sslshader

