
PacketShader 2.0:
Design Considerations

FIF Testbed WG Meeting

2011.8.10. 3-6pm 충남대 공학2관 492호

Sue Moon

in collaboration with:

Joongi Kim, Seonggu Huh, Sangjin Han, Keon Jang,
KyoungSoo Park ‡

Advanced Networking Lab, CS, KAIST
‡ Networked and Distributed Computing Systems Lab, EE, KAIST

PacketShader 1.0

 GPUs

 a great opportunity for fast packet processing

 v1.0: more of a forwarding engine

 Optimized packet I/O + GPU acceleration

 scalable with

• # of multi-core CPUs, GPUs, and high-speed NICs

 Current Prototype

 Supports IPv4, IPv6, OpenFlow, and IPsec

 40 Gbps performance on a single PC

2

CPU BOTTLENECK

3

Per-Packet CPU Cycles for 10G

4

1,200 600

1,200 1,600
Cycles
needed

Packet I/O IPv4 lookup

= 1,800 cycles

= 2,800

Your
budget

1,400 cycles

10G, min-sized packets, dual quad-core 2.66GHz CPUs

5,4001,200 … = 6,600

Packet I/O IPv6 lookup

Packet I/O Encryption and hashing

IPv4

IPv6

IPsec

+

+

+

(in x86, cycle numbers are from RouteBricks [Dobrescu09] and ours)

PacketShader Part 1: I/O Optimization

5

Packet I/O

Packet I/O

Packet I/O

Packet I/O

 1,200 reduced to 200 cycles
per packet

 Main ideas

 Huge packet buffer

 Batch processing

600

1,600

IPv4 lookup

= 1,800 cycles

= 2,800

5,400 … = 6,600

IPv6 lookup

Encryption and hashing

+

+

+

1,200

1,200

1,200

PacketShader Part 2: GPU Offloading

6

Packet I/O

Packet I/O

Packet I/O

 GPU Offloading for

 Memory-intensive or

 Compute-intensive
operations

600

1,600

IPv4 lookup

5,400 …

IPv6 lookup

Encryption and hashing

+

+

+

OPTIMIZING
PACKET I/O ENGINE

7

User-space Packet Processing

Packet processing in kernel is bad

 Kernel has higher scheduling priority;
overloaded kernel may starve user-
level processes.

 Some CPU extensions such as MMX
and SSE are not available.

 Buggy kernel code causes irreversible
damage to the system.

8

Processing in user-space is good

• Rich, friendly development and
debugging environment

• Seamless integration with 3rd party
libraries such as CUDA or OpenSSL

• Easy to develop virtualized data
plane.

But packet processing in user-space is known to be 3x times slower!

 Our solution: (1) batching + (2) better core-queue mapping

Inefficiencies of Linux Network Stack

CPU cycle breakdown in packet RX

Software prefetch

Huge packet buffer

Compact metadata

Batch processing

Huge Packet Buffer

10

eliminates per-packet buffer allocation cost

Linux per-packet buffer allocation

Our huge packet buffer scheme

Batch Processing

 Simple queuing theory:

 input traffic > capacity of the system

 RX queues fills up

 Dequeue and process multiple packets

 It improves overall throughput

11

amortizes per-packet bookkeeping costs.

Effect of Batched Packet Processing

12

64-byte packets, two 10G ports, one CPU core

Without batching: 1.6 Gbps for RX, 2.1 Gbps for TX, 0.8 Gbps for forwarding

 batching is essential!

NUMA –Aware RSS

 RSS (Receive-Side Scaling) default behavior

 RSS-enabled NICs distribute incoming packets into all CPU cores.

 To save bandwidth between NUMA nodes, we prevent packets from
crossing the NUMA boundary.

13

IOH

NIC

IOH

NIC

CPU cores

IOH

NIC

IOH

NIC

CPU cores

Multiqueue-Aware User-space Packet I/O

14

Our multiqueue-aware scheme:

Memory access is partitioned
between cores

Existing scheme (ex. libpcap):

Per-NIC queues cause
cache bouncing and
lock contention

GPU FOR PACKET PROCESSING

15

Advantages of GPU for Packet Processing

1. Raw computation power

2. Memory access latency

3. Memory bandwidth

 Comparison between

 Intel X5550 CPU

 NVIDIA GTX480 GPU

16

(1/3) Raw Computation Power

 Compute-intensive operations in software routers

 Hashing, encryption, pattern matching, network coding,
compression, etc.

 GPU can help!

17

CPU: 43×109

= 2.66 (GHz) ×
4 (# of cores) ×

4 (4-way superscalar)

GPU: 672×109

= 1.4 (GHz) ×
480 (# of cores)

Instructions/sec

<

(2/3) Memory Access Latency

 Software router lots of cache misses

 GPU can effectively hide memory latency

18

GPU core

Cache
miss

Cache
miss

Switch to
Thread 2

Switch to
Thread 3

(3/3) Memory Bandwidth

19

CPU’s memory bandwidth (theoretical): 32 GB/s

(3/3) Memory Bandwidth

20

CPU’s memory bandwidth (empirical) < 25 GB/s

4. TX:
RAM NIC

3. TX:
CPU RAM2. RX:

RAM CPU

1. RX:
NIC RAM

(3/3) Memory Bandwidth

21

Your budget for packet processing can be less 10 GB/s

(3/3) Memory Bandwidth

22

Your budget for packet processing can be less 10 GB/s

GPU’s memory bandwidth: 174GB/s

Results (w/ 64B packets)

23

28.2

8

15.6

3

39.2 38.2

32

10.2

0

5

10

15

20

25

30

35

40

IPv4 IPv6 OpenFlow IPsec

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

CPU-only CPU+GPU

1.4x 4.8x 2.1x 3.5xGPU speedup

24

Year Ref. H/W IPv4
Throughput

2008 Egi et al. Two quad-core CPUs 3.5 Gbps

2008 “Enhanced SR”
Bolla et al.

Two quad-core CPUs 4.2 Gbps

2009 “RouteBricks”
Dobrescu et al.

Two quad-core CPUs
(2.8 GHz)

8.7 Gbps

2010 PacketShader
(CPU-only)

Two quad-core CPUs
(2.66 GHz)

28.2 Gbps

2010 PacketShader
(CPU+GPU)

Two quad-core CPUs
+ two GPUs

39.2 Gbps

Kernel

User

Results

What PacketShader is not

 Working router

 Control plane missing

 Microbenchmarked for only single appllications (protocols)

 Basic protocols not implemented (e.g. ARP, ICMP, ...)

25

PacketShader 2.0

 Control plane integration

 Dynamic routing protocols with Quagga or XORP

 Opportunistic offloading

 CPU at low load

 GPU at high load

 Multi-functional, modular programming environment

 Integration with Click? [Kohler99]

26

#1 Control-plane Integration

Packet I/O driver

Linux TCP/IP stack

Packet API

ipv4route, IPSec, OpenFlow, …

Fast-path

Slow-path

Kernel routing table

Existing software
routing frameworks
(e.g. XORP, Quagga)

Forwarding
table

manager

Forwarding
engine

(using GPUs)

User
space

Kernel
space

route
updates

Double Buffering

28

Inside GPU

forwarding tables

#2 Opportunistic Offloading

 Implemented in SSLShader, our GPU-based SSL accelerator

 Threshold-based switching between CPU-only and
CPU+GPU operations

29

#3 Multi-functional , modular programming

environment

30

#3 Multi-functional, modular programming

environment

NIC

Recv

Send

?

Module 1

?

Module 2

?

Module N

NIC NIC

NIC NIC NIC

slow path
(e.g. Linux

TCP/IP stack)(drop)

?

Chunk

Subchunk

Filter

Gathering queue

Schedulable task

Y

N

N

NY

Y

 Cascading

 Batching, batching, batching!

 The IO engine (modified NIC driver) uses continuous huge packet
buffers called “chunks”.

 The user-level process pipelines multiple chunks.

 The GPU processes multiple chunks in parallel.

 Hardware-aware optimizations

 No NUMA node crossing

 Minimized cache conflicts among multi-cores

Factors behind PacketShader 1.0 Performance

Remaining Challenges

 100+ Gbps speed

 Stateful processing

 Intrusion detection systems / firewalls

33

Review of I/O Capacity for 100+ Gbps

 QuickPath Interconnect (QPI)

 CPU socket-to-socket link for remote memory

 IOH-to-IOH link for I/O traffic

 CPU-to-IOH for CPU to peripheral connections

 Today’s QPI link

 12.8 GB/s or 102.4 Gbps

 Sandy Bridge

 On recall at the moment

 Expected to boost performance to 60 Gbps w/o modification

Review of Memory B/W for 100+ Gbps

 For 100Gbps forwarding we need 400 Gbps in memory
bandwidth + bookkeeping

 Current configuration

 triple-channel DDR3 1,333 MHz

 32 GB/s per core (theoretical) and 17.9GB/s (empirical)

 On NUMA system

 More nodes

 Careful placement...

Future Work

 Consider other architectures

 AMD’s APU

 Tilera’s tiled many-core chips

 Intel’s MIC

 Become a platform for all new FIA architectures

 Advantage over NetFPGA, ServerSwitch, ATCA solutions

 Who in Korea will take it to full development?

36

Positioning

 Commercial competitor?

 Core routers with 100+ Tbps capacity? No.

 Edge routers with 100+ Gbps capacity with complex features?
Maybe

 Experimental platforms?

• NetFGPA

• ServerSwitch

• RouteBricks

• ATCA-based boxes

37

Collaboration opportunities with US

 PlanetLab #1

 OpenFlow / NetFPGA initiatives #1

 NSF GENI

 NSF FIA

 XIA

 NDN

 MobilityFirst

 Nebula

A Collaboration opportunity with EU: OneLab2

 Extension of OneLab

 Open call by 2011.9.15.

 Work Packages
 Control Plane Interoperability

 Experimental Plane Interoperability

 Wireless Testbeds

 Wired Testbeds

 Private PlanetLab Korea (PPK) already federated

 What more needs to be done?
 Long-term commitment

 Designate a technical correspondent

 Join as a partner by September

 Apply for support to MKE or KCC

39

Venues for publicity opportunities

 ACM SIGCOMM conferences / workshops / poster sessions

 SOSP/OSDI, EuroSys, APSys

 ACM CCR (6pg only, 3mon turn-around)

 USENIX ;login

 GENI meetings

 EU FP7 meetings

 AsiaFI summer school, CFI conference

QUESTIONS?

THANK YOU!

For more details

https://shader.kaist.edu/

41

http://shader.kaist.edu/sslshader
http://shader.kaist.edu/sslshader

