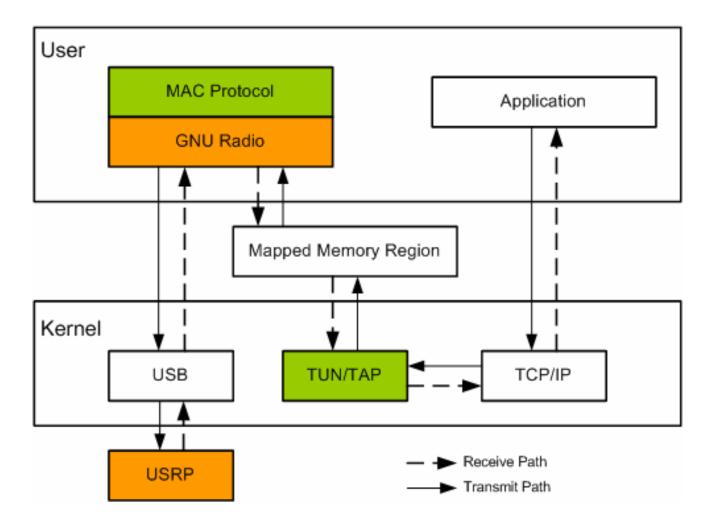

Future Internet Winter Camp 2009 Session 4: 무선 테스트베드 GNU Radio를 이용한 Cognitive Radio Network 구현

Sunghyun Choi, Kwanghun Han, Hyewon Lee, Suhwook Kim, and Kyuhwan Kwak Multimedia & Wireless Networking Lab. Seoul National University

Table of Contents


♦ GNU Radio

- An open source software toolkit for building Software Defined Radio (SDR)
- Signal processing package
- Supports Linux and Mac OS
- Programming languages
 - C++
 - Performance critical applications
 - Signal processing blocks
 - Python
 - Using Python for creating flow graphs
 - Also used for creating GUI's
 - and other non performance critical applications

♦ GNU Radio Data Path

Available GNU Radio Blocks

Source / Sinks
Signal
Noise
Null
File
Network
Packet
Video
Audio
USRP
FFT
Scope
Math operations
Add
Subtract
Multiply
Divide
Log

Type Conversions

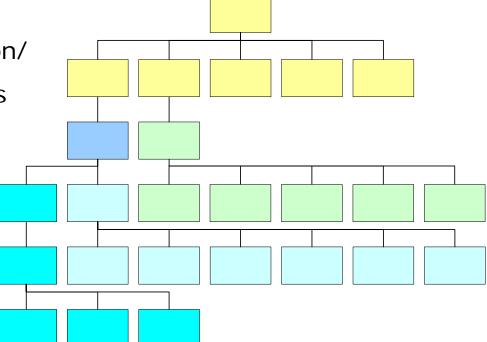
Complex <-> IntShort / Real/ Imag Complex <-> Mag / Arg Float <-> Complex / Char / UChar Packed <-> Unpacked Symbols <-> Chunks Vector <-> Stream <-> Streams Interleaver / Deinterleaver Complex Conjugate

Filters
FIR
IIR (single pole)
FFT/IFFT
Freq. Translating FIR
Rational Resampling FIR
Root Raised Cosine
Hilbert
Power Squelch

Modulation

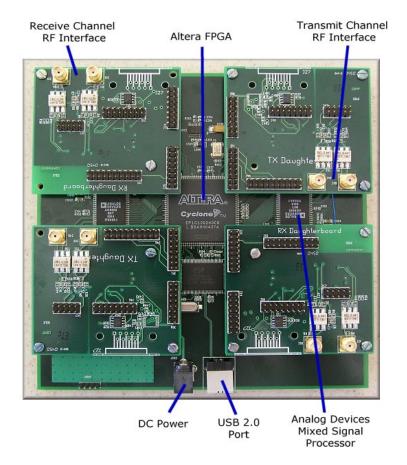
WFM / NBFM AM / PM / SSB FSK / PSK / QAM GMSK / VSB-8 / OFDM

Coding	
Differential	
Trellis	
Viterbi	
BCJR	
Reed Solomon	

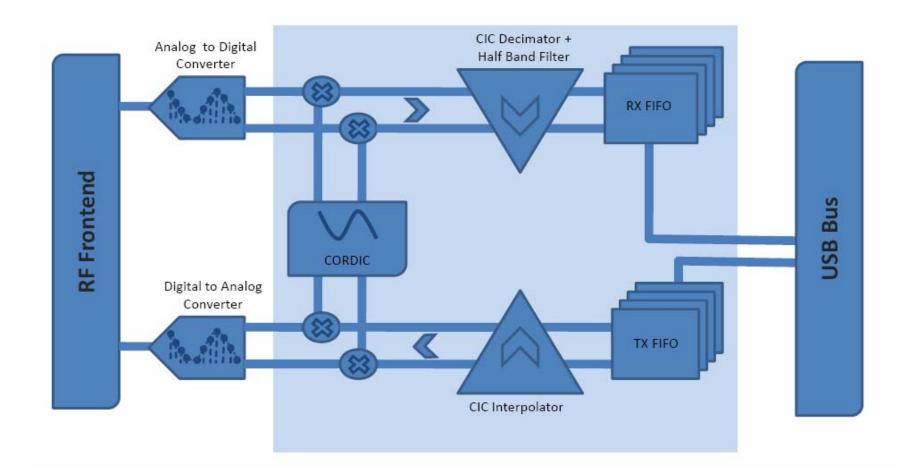

Misc. M&M Clock Recovery AGC PLL Costas Loop Adaptive Equalizer

Directory Structure of GNU Radio

- /gr-utils/
 - Plotting
- /gnuradio-examples/python/
 - Execution example files
 - Written in Python
- /gnuradio-core/
 - lib
 - Core blocks
 - Written in C++
 - python
 - Python modules
 - Modulation, OFDM, Packetizing, etc.

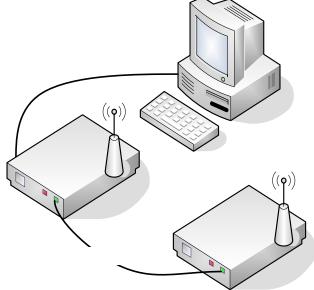


GNU Radio Hardware Platform


- Universal Software Radio Peripheral (USRP)
 - The USRP is a device developed especially for GNU Radio
 - Supporting
 - Two Receive daughter boards
 - Two Transmit daughter boards
 - Full duplex
 - 4×ADC, 12 bit @ 64 MS/S
 - 4×DAC, 14 bit @ 128 MS/S
 - FPGA
 - USB 2.0 interface to host PC
 - It can sustain 32 MB/sec

USRP Architecture

USRP Daughter Boards


- RF frontend of USRP
 - Transceiver: RFX series
 - RFX400: 400-500 MHz, 100 mW output
 - RFX900: 800-1000 MHz, 200 mW output
 - RFX1200: 1150-1450 MHz, 200 mW output
 - RFX1800: 1.5-2.1 GHz, 100 mW output
 - RFX2400: 2.3-2.9 GHz, 20 mW output

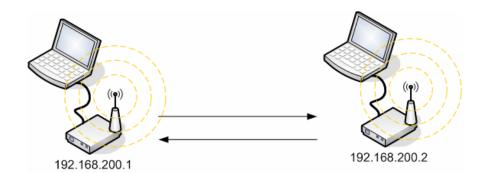
• USRP2

- Using gigabit Ethernet interface instead of USB 2.0 interface
 - Maximum bandwidth is not limited by interface between host and USRP2 anymore
 - Supporting 25 MHz bandwidth (8 MHz for USRP1) for one USRP device
 - A gigabit Ethernet interface can be used commonly for more than 2 USRP devices
 - Secondary USRP2 device can be connected with primary USRP2 device using MIMO cable

• USRP2

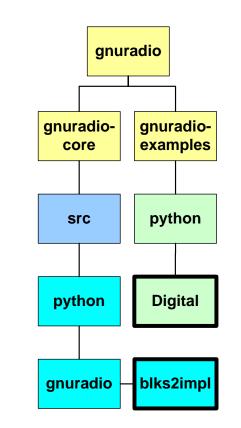
- Possibly supports stand-alone mode in the future
 - It has a SD card
 - GNU radio does not support this yet
 - Being developing
 - Too long processing delay problem can be reduced if standalone mode is supported
- MIMO capability using multiple USRP2 boards
 - USRP2 has MIMO cable port to exchange clock and data among USRP2 boards
 - GNU radio software does not support this mode yet.
 It is under development now

♦ USRP2


	USRP1	USRP2
Interface	USB 2.0	Gigabit Ethernet
FPGA	Altera EP1C12	Xilinx Spartan 3 2000
RF Bandwidth to/from host	8 MHz @ 16bits	25 MHz @ 16bits
Cost	\$700	\$1400
ADC Samples	12-bit, 64 MS/s	14-bit, 100 MS/s
DAC Samples	14-bit, 128 MS/s	16-bit, 400 MS/s
Daughterboard capacity	2 TX, 2 RX	1 TX, 1 RX
SRAM	None	1 Megabyte
Power	6V, 3A	6V, 3A

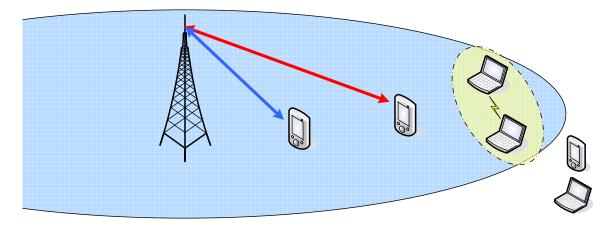
• Simple Performance

- Test environment
 - Ubuntu 8.10 (Kernel ver. 2.6.27)
 - Intel Pentium dual core 2.0 GHz
 - 1 GB Memory
- Delay
 - Ping test
 - RTT: ~10 msec
- Throughput
 - ~1 Mbps (without any MAC protocol)



Demo Environment

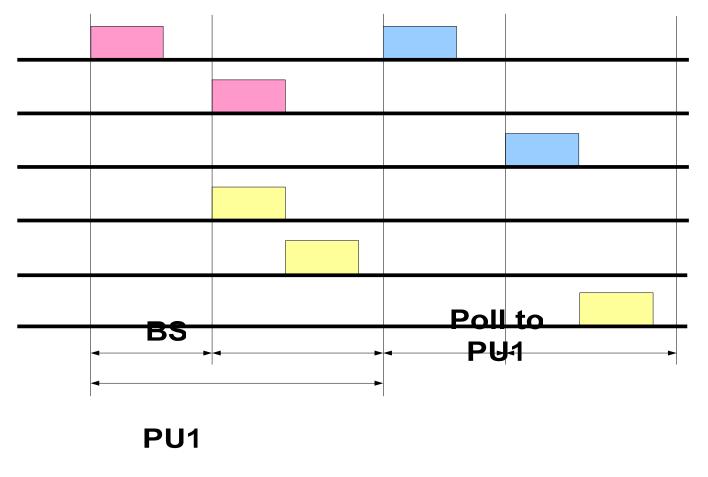
- Operating frequency band: 1.3 GHz
- Bandwidth: 8 MHz
- Modulation: DBPSK
- Bit-rate: 300 kb/sec
- Primary network
 - Cellular network: 1 BS, 2 Primary user
 - Polling MAC
- Secondary network
 - Uplink bandwidth sharing
 - Underlay communication & Overlay communication



Demo Topology

Band sharing illustration

Implementation

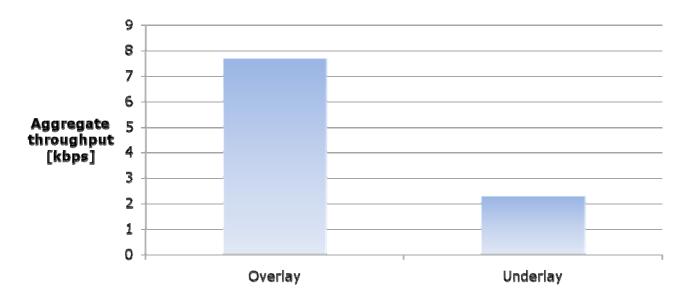


F

Primary Network

Demo Scenario

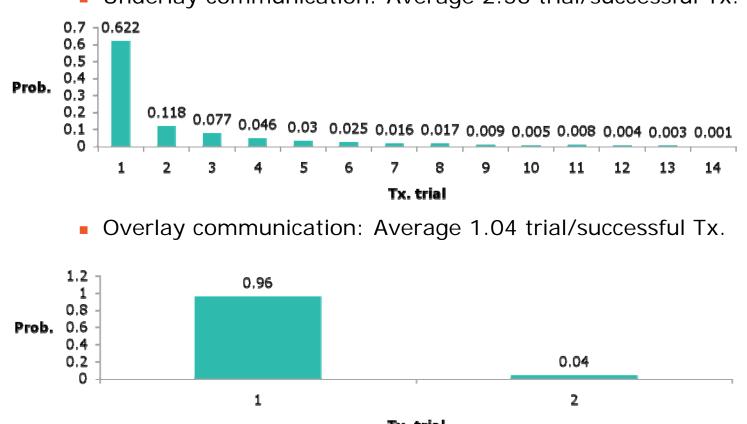
- Primary traffic pattern: CBR (8 kbps for each PU, 16 kbps for BS)
- Secondary users: Using ARQ for error recovery



Pkt

Demo Results

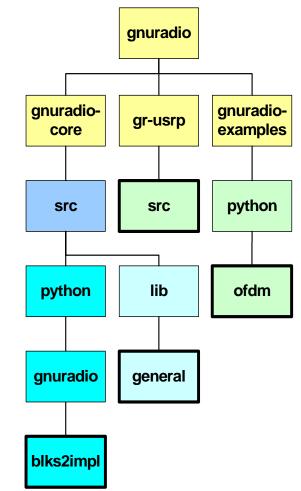
- Aggregate throughput of primary users and CR users
 - Primary network: 32 kbps
 - Secondary
 - Overlay communication: 7.67 kbps
 - Underlay communication: 2.28 kbps



Demo Results

- Transmission trial of secondary user
 - PDF of transmission trial

• Underlay communication: Average 2.56 trial/successful Tx.

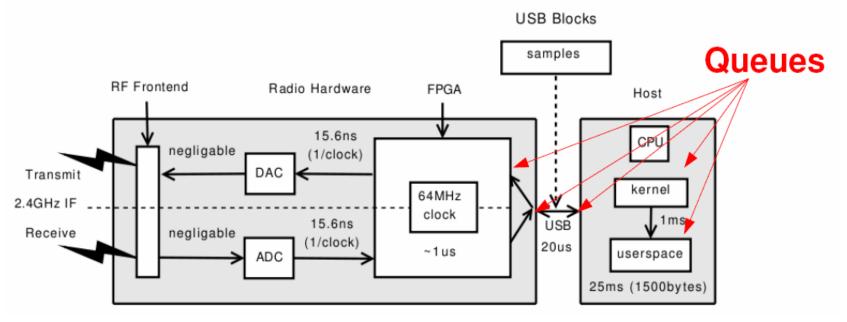


Implementation of OFDM

- OFDM
 - Parameters
 - Packet size
 - Operating frequency band
 - Transmit power
 - Modulation
 - FPGA interpolation/decimation rate
 - FFT length
 - Occupied tones
 - CP length

Implementation of OFDM

- ◆ OFDM
 - Measurements of available operating point
 - Interpolation rate: 128~512
 - Decimation rate: 64~256
 - FFT length: ~1024
 - Occupied tones: ~800
 - Maximum throughput
 - 1024 FFT with 800 occupied tones
 - 128 interpolation
 - Modulation: QPSK
 - → ~1.28 Mbps



Limitation of GNU Radio

Long & Unpredictable Processing Delay

- It may cause critical problems in
 - MAC protocol which requires fine time synchronization
 - Dynamic control using feedback information
 - Time varying environments

Limitation of GNU Radio

Unknown Tx. Power

- We know digital amplitude at ADC/DAC only
 - 2 bytes value (0~32000)
- Actual Tx. power depends on USRP, daughter board, antenna, and host computer
 - To know real Tx. power, we should measure Tx. power at the RF frontend
- Insufficiency of packet-based concept
 - Message blocks (M-blocks)
 - GNU Radio extension that allows more natural handling of a packet-based data
 - However, GNU radio does not fully support this yet
 - It will be new feature of release-3.2

Concluding Remark

Conclusion

- GNU Radio gives us a lot of flexibility to implementing SDR
 - OFDM, MIMO
 - Flexible MAC
 - Hydra
 - 802.11 like system with time scaling (slot time = 10 ms)
- However, GNU Radio has some limitations
 - Long and unpredictable delay
 - Uncertain operation of USRP
 - Insufficiency of packet-based concept
- For more information, please refer to
 - GNU Radio homepage: <u>http://gnuradio.org</u>
 - GNU Radio forum: <u>http://www.nabble.com/GnuRadio-</u> f1878.html

Thank You I Any Questions?