Disruption-Tolerant Networks (DTNs): Mobility and Forwarding Algorithm

Richard J. La
University of Maryland

Joint work with G. Lipsa and
M. Kalantari

Outline

- Overview of DTNs
- Distribution of inter-contact times
- Motivation
- Existing work
- Hybrid random walk
- Distributional convergence
- Simulation
- Ant-based packet forwarding algorithm
- Overview of swarm intelligence \& ant routing
- Description of algorithm
- Simulation

Overview of DTNs

- Evolution of Delay Tolerant Networks to Disruption Tolerant Networks
- Mobile nodes moving around an area
- Sparse node connectivity
- Network disconnected most of the time
- Nodes rely on other nodes to relay packets exploiting mobility
- Mobility of nodes unknown in advance and may change over time
- Multiple copies of packets may exist to increase the probability of successful delivery (e.g., controlled flooding)

Motivation

- Message delivery ratio and (average) delay affected by inter-contact times between nodes
- Average value (intensity of contacts or meetings)
- Correlation structure
- Distribution of inter-contact times between two nodes

Background (inter-contact times)

- What does the distribution of inter-contact times between two nodes look like in different environments?
- Simulation and measurements
- Can one say anything about it (even for simple models)?

Inter-contact times: simulations \& measurements

- Study by Groenevelt et al. ("The message delay in mobile ad hoc networks" - Performance, 2005)
- suggests exponential distribution of inter-contact times (including random waypoint \& random direction) using simulation
- Study by Chaintreau et al. ("Impact of human mobility on the design of opportunistic forwarding algorithms" - Infocom 2006)
- Used real measurements obtained in several different settings
- Reflects the underlying social network
- Suggests heavy tail distribution (over a range of interest)

Random Walk

- El Gamal et al. - Infocom 2004
- Unit square divided into $n \times n$ cells
- wrapped around - a discrete torus of size $n \times n$
- Node moves to one of adjacent cells (up, down, left or right) with equal probability of $\frac{1}{4}$ (independent of the past)

Inter-contact times for Hybrid Random Walk (HRW)

- Hybrid random walk mobility model: $0 \leq \beta \leq 1 / 2$

Inter-meeting times for Hybrid Random Walk (HRW)

- $\beta=0$: i.i.d. mobility
- At each time $t=0,1, \ldots$, a node is in one of n subcells with equal probability $1 / n$
- $\beta=\frac{1}{2}$: random walk

HRW mobility model

- $n=1,2, \cdots \quad h_{2}(n)$

HRW mobility model

- For each fixed n,
- Number of cells $=h_{1}(n) \times h_{1}(n)$
- Number of subcells in each cell $=h_{2}(n) \times h_{2}(n)$

Total number of subcells $=\left(h_{1}(n) \times h_{2}(n)\right)^{2}$

Assumptions:

i. $h_{1}(n)$ is a positive odd integer and $h_{2}(n)$ is a positive integer
ii. $\lim _{n \rightarrow \infty} h_{2}(n)=\infty$

HRW mobility model

- We assume that two nodes meet (or have contact) when they are in the same subcell
- Let $\left\{T_{k}^{n}, k \geq 0\right\}$ (with $T_{0}^{n}=0$) denote the sequence of times at which they meet each other, i.e., end up in the same subcell
- T_{k}^{n} - time at which two nodes meet for the k-th time
- $X_{k}^{n}:=T_{k}^{n}-T_{k-1}^{n}$ - k-th inter-contact time ($\mathrm{k}=1,2, \ldots$)

HRW mobility model

- Note that the rvs $X_{2}^{n}, X_{3}^{n}, \cdots$ are i.i.d.

Proposition: Under Assumptions i) and ii) we have the following distributional convergence:

$$
\frac{X_{2}^{n}}{\left(h_{1}(n) \times h_{2}(n)\right)^{2}} \Rightarrow_{n} \exp (1)
$$

- Implications: for large h_{2}, inter-contact times $X_{k}, k \geq 2$, can be approximated using exp. rvs with mean

$$
\left(h_{1} \times h_{2}\right)^{2}
$$

- True if $\beta<\frac{1}{2}$ in the original HRW model

Simulation

- $h_{1}=19$ and $h_{2}=8$
histogram of inter-contact times ($h_{1}=19, h_{2}=8$)

Simulation

- $h_{1}=35$ and $h_{2}=4$

Role of Assumption ii)

- If $h_{2}(n) \leq B, n \geq 1$, for some finite B, then

$$
\mathbf{P}\left[X_{2}^{n}=1\right]=\frac{1}{4 \cdot\left(h_{2}(n)\right)^{2}} \geq \frac{1}{4 \cdot B^{2}}
$$

- Implies that, for all $\epsilon>0$,

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \mathbf{P}\left[\frac{X_{2}^{n}}{\left(h_{1}(n) \cdot h_{2}(n)\right)^{2}} \leq \epsilon\right] \geq \frac{1}{4 \cdot B^{2}} \\
& \Rightarrow \frac{1}{4 \cdot B^{2}}>1-\exp (-\epsilon) \text { for sufficiently small } \epsilon>0 \\
& \Rightarrow \frac{X_{2}^{n}}{\left(h_{1}(n) \times h_{2}(n)\right)^{2}} \nRightarrow_{n} \exp (1)
\end{aligned}
$$

Simulation

- $h_{1}=499, h_{2}=1$

Ant-based packet forwarding algorithm

- No fixed routing
- No end-to-end paths available from sources to destinations most of the time
- Location of destinations and sequence of nodes to traverse unknown in advance
- When two nodes come in contact with each other, they exchange information and figure out who will forward which packets (if any)
- Must reflect who has a better chance of (eventually) successfully delivering packets, possibly through other relay nodes, to the intended destinations

Ant-based packet forwarding algorithm

- Set-up
- Set of mobile nodes move in a compact region in \mathbb{R}^{2}
- Mobility of the users given by a joint process
$\mathbf{X}=\left\{\left(X_{j}(t), j \in \mathcal{N}\right), t \geq 0\right\}$
- E.g., Random Waypoint, Random Direction, group mobility models, etc.
- Connectivity given by a disk model
- Two nodes i and j connected if $\left\|x_{i}(t)-X_{j}(t)\right\| \leq \gamma$
- Packets delivered to a set of gateways

Single commodity (can be trivially generalized to multiple commodities case)

Ant-based packet forwarding algorithm

- Goals:
- Maximize the packet delivery ratio (fraction of packets delivered to gateways)
- Finite buffer sizes at nodes
- Minimize end-to-end packet delays to gateways
- Capture mobility patterns of the nodes
- Simplicity of the algorithm
- Minimal exchange of information when two nodes meet

30 second overview of swarm intelligence and ant routing

- Premise: Individual insects not so intelligent
- A swarm of insects can solve fairly complex problems
- Finding shortest path, minimum spanning tree, sorting, task (re-)assignment, graph partitioning, etc.
- Question is How do they solve these problems with (supposedly) such low intelligence?
- More importantly, how do we mimic their behavior to solve engineering problems in a distributed, robust, scalable manner?

Ant Foraging

(or my understanding of it)

- Foraging behavior of ants
- Exploration - randomly venture out to food sources
- Backtracking - when returning to the nest, deposit a little bit of chemical called "pheromone" along trail
- Signals to other ants that there is food down the road
- A form of indirect communication (called "stigmergy")

Ant Foraging

- Pheromone deposit along a path attracts more ants to follow the path
- Reinforcement
- Decay (through evaporation)
- Allows switches to other paths when preferred paths change or become unavailable
- Ants follow better (shorter) paths more quickly
- Pheromone strength increases faster for shorter paths
- Ants concentrate on shortest paths after a while

Max. Packet delivery ratio

- Infinite buffer sizes
- Backpressure algorithm (Tassiulas\&Ephremides)
- Uses queue size differences - equalize queue differentials as much as possible
- Stable queue sizes, i.e., queues do not blow up
- Finite buffer size
- Want to mimic the stabilizing behavior of backpressure algorithm
- Somehow capture and exploit mobility pattern of nodes
- Fast moving nodes and nodes with smaller (node) delays may be preferred
- More likely to unload packets faster

Min. E2E delays

- Backpressure algorithm does not explicitly take delay into account
- End-to-end delays difficult to estimate
- Reverse path ACK may not be available or even desirable
- Adds to the load
- Use local holding times at each node
- Find a sequence of nodes with smaller holding times for routing
- Again, nodes that can unload packets quickly likely to experience fewer packet losses as well

Ant-based packet forwarding algorithm

- Each node maintains a pheromone value $\phi_{i}(t), t=0,1, \ldots$
- Pheromone value decays with time (discounting)

$$
\phi_{i}(t) \leftarrow \phi_{i}(0) \cdot \exp (-\beta t), \quad \beta>0
$$

- After a successful transmission of a packet at time \dagger

$$
\phi_{i}\left(t^{+}\right) \leftarrow\left\{\begin{array}{c}
\phi_{i}(t)+\alpha \cdot \Delta(D) \\
\text { if the packet originated at } i \\
\phi_{i}(t)+\Delta(D) \\
\text { if the packet originated elsewhere }
\end{array}\right.
$$

where $0 \leq \alpha \leq 1, D$ is holding time of the packet, and

$$
\Delta: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}\left(\text {where } \mathbb{R}_{+}=[0, \infty)\right) \quad(\text { e.g., } \exp (-\xi \cdot D))
$$

Ant-based packet forwarding algorithm

- Let $\mathcal{L}(t)$ denote the set of groups of unidirectional links that can be activated simultaneously
- For each unidirectional link $\ell:=(i, j)$, le \dagger

$$
\Delta \wedge_{\ell}(t):=\frac{Q_{i}(t)}{\phi_{i}(t)}-\frac{Q_{j}(t)}{\phi_{j}(t)}
$$

- A set of links in

$$
L^{\star}(t):=\arg \max _{L \in \mathcal{L}(t)} \sum_{\ell \in L} \Delta \Lambda_{\ell}(t)
$$

is selected at time $t=0,1,2, \ldots$

Ant-based packet forwarding algorithm

- Intuition
- Want to estimate the "extra" capacity for carrying other nodes' packets
- Credit smaller for forwarding its own packets (through pheromone increment)
- Prefer nodes with smaller holding times and quicker unloading time
- Reflects underlying mobility of nodes (through $\Delta(D)$)

Simulation

- Five nodes and a gateway
- Time slotted into timeslots
- One packet transmission per timeslot
- Nodes move according to RWP mobility model
- Heterogeneous mobility
- Finite buffer size of 200 packets
- Packets arrive at each node according to i.i.d. Bernoulli rvs
- $\lambda_{0}=[0.0250 .030 .040 .0230 .02$]
- Tx radius of 0.2

Simulation

- Arrival rate given by $\beta \times \lambda_{0}=\beta \times[0.0250 .030 .040 .0230 .02]$

