Disruption-Tolerant Networks (DTNs): Mobility and Forwarding Algorithm

Richard J. La University of Maryland

Joint work with G. Lipsa and M. Kalantari

A P

Outline

- Overview of DTNs
- Distribution of inter-contact times
 - Motivation
 - Existing work
 - Hybrid random walk
 - Distributional convergence
 - Simulation
- Ant-based packet forwarding algorithm
 - Overview of swarm intelligence & ant routing
 - Description of algorithm
 - Simulation

Overview of DTNs

- Evolution of Delay Tolerant Networks to Disruption Tolerant Networks
- Mobile nodes moving around an area
- Sparse node connectivity
 - Network disconnected most of the time
 - Nodes rely on other nodes to relay packets exploiting mobility
 - Mobility of nodes unknown in advance and may change over time
 - Multiple copies of packets may exist to increase the probability of successful delivery (e.g., controlled flooding)

Motivation

- Message delivery ratio and (average) delay affected by inter-contact times between nodes
 - Average value (intensity of contacts or meetings)
 - Correlation structure
 - Distribution of inter-contact times between two nodes

Background (inter-contact times)

- What does the distribution of inter-contact times between two nodes look like in different environments?
 - Simulation and measurements
 - Can one say anything about it (even for simple models)?

Inter-contact times: simulations & measurements

- Study by Groenevelt et al. ("The message delay in mobile ad hoc networks" - Performance, 2005)
 - suggests exponential distribution of inter-contact times (including random waypoint & random direction) using simulation
- Study by Chaintreau et al. ("Impact of human mobility on the design of opportunistic forwarding algorithms" – Infocom 2006)
 - Used real measurements obtained in several different settings
 - Reflects the underlying social network
 - Suggests heavy tail distribution (over a range of interest)

Random Walk

- El Gamal et al. Infocom 2004
 - Unit square divided into n x n cells
 - wrapped around a discrete torus of size n x n
 - Node moves to one of adjacent cells (up, down, left or right) with equal probability of $\frac{1}{4}$ (independent of the past) n

_0.5

Inter-meeting times for Hybrid Random Walk (HRW)

- $\beta = 0$: i.i.d. mobility
 - At each time t = 0, 1, ..., a node is in one of n subcells with equal probability 1/n
- $\beta = \frac{1}{2}$: random walk

HRW mobility model

- For each fixed n,
 - Number of cells $= h_1(n) \times h_1(n)$
 - Number of subcells in each cell = $h_2(n) \times h_2(n)$

Total number of subcells $= (h_1(n) \times h_2(n))^2$

Assumptions:

i. $h_1(n)$ is a positive odd integer and $h_2(n)$ is a positive integer

$$ii. \lim_{n \to \infty} h_2(n) = \infty$$

HRW mobility model

- We assume that two nodes meet (or have contact) when they are in the same subcell
- Let $\{T_k^n, k \ge 0\}$ (with $T_0^n = 0$) denote the sequence of times at which they meet each other, i.e., end up in the same subcell
 - T_k^n time at which two nodes meet for the k-th time

HRW mobility model

• Note that the rvs X_2^n, X_3^n, \cdots are i.i.d.

Proposition: Under Assumptions i) and ii) we have the following distributional convergence:

$$\frac{X_2^n}{(h_1(n) \times h_2(n))^2} \Rightarrow_n \exp(1)$$

- Implications: for large h_2 , inter-contact times $X_k, k \ge 2$, can be approximated using exp. rvs with mean

- $(h_1 \times h_2)^2$
- True if $\beta < \frac{1}{2}$ in the original HRW model

Simulation

•
$$h_1 = 19 \text{ and } h_2 = 8$$

Simulation

•
$$h_1 = 35$$
 and $h_2 = 4$

Role of Assumption ii)

• If $h_2(n) \leq B$, $n \geq 1$, for some finite B, then

$$P[X_2^n = 1] = \frac{1}{4 \cdot (h_2(n))^2} \ge \frac{1}{4 \cdot B^2}$$

- Implies that, for all $\epsilon > 0$,

$$\limsup_{n \to \infty} \mathbf{P}\left[\frac{X_2^n}{(h_1(n) \cdot h_2(n))^2} \le \epsilon\right] \ge \frac{1}{4 \cdot B^2}$$

 $\frac{X_2^n}{(h_1(n) \times h_2(n))^2} \not\Rightarrow_n \exp(1)$

$$\frac{1}{4 \cdot B^2} > 1 - \exp(-\epsilon) \quad \text{for sufficiently small } \epsilon > 0$$

Simulation

•
$$h_1 = 499, h_2 = 1$$

- No fixed routing
 - No end-to-end paths available from sources to destinations most of the time
 - Location of destinations and sequence of nodes to traverse unknown in advance
 - When two nodes come in contact with each other, they exchange information and figure out who will forward which packets (if any)
 - Must reflect who has a better chance of (eventually)
 successfully delivering packets, possibly through other relay nodes, to the intended destinations

- Set-up
 - Set of mobile nodes move in a compact region in $\ensuremath{\,\mathbb{R}}^2$
 - Mobility of the users given by a joint process $\mathbf{X} = \{(X_j(t), j \in \mathcal{N}), t \ge 0\}$
 - E.g., Random Waypoint, Random Direction, group mobility models, etc.
 - Connectivity given by a disk model
 - Two nodes i and j connected if $||X_i(t) X_j(t)|| \le \gamma$
 - Packets delivered to a set of gateways
 - Single commodity (can be trivially generalized to multiple commodities case)

- Goals:
 - Maximize the packet delivery ratio (fraction of packets delivered to gateways)
 - Finite buffer sizes at nodes
 - Minimize end-to-end packet delays to gateways
 - Capture mobility patterns of the nodes
 - Simplicity of the algorithm
 - Minimal exchange of information when two nodes meet

30 second overview of swarm intelligence and ant routing

- Premise: Individual insects not so intelligent
- A swarm of insects can solve fairly complex problems
 - Finding shortest path, minimum spanning tree, sorting, task (re-)assignment, graph partitioning, etc.
- Question is How do they solve these problems with (supposedly) such low intelligence?
 - More importantly, how do we mimic their behavior to solve engineering problems in a distributed, robust, scalable manner?

Ant Foraging (or my understanding of it)

- Foraging behavior of ants
 - Exploration randomly venture out to food sources
 - Backtracking when returning to the nest, deposit a little bit of chemical called "pheromone" along trail
 - Signals to other ants that there is food down the road
 - A form of indirect communication (called "stigmergy")

Ant Foraging

- Pheromone deposit along a path attracts more ants to follow the path
 - Reinforcement
 - Decay (through evaporation)
 - Allows switches to other paths when preferred paths change or become unavailable
- Ants follow better (shorter) paths more quickly
 - Pheromone strength increases faster for shorter paths
- Ants concentrate on shortest paths after a while

Max. Packet delivery ratio

- Infinite buffer sizes
 - Backpressure algorithm (Tassiulas&Ephremides)
 - Uses queue size differences equalize queue differentials as much as possible
 - Stable queue sizes, i.e., queues do not blow up
- Finite buffer size
 - Want to mimic the stabilizing behavior of backpressure algorithm
 - Somehow capture and exploit mobility pattern of nodes
 - Fast moving nodes and nodes with smaller (node) delays may be preferred
 - More likely to unload packets faster

Min. E2E delays

- Backpressure algorithm does not explicitly take delay into account
 - End-to-end delays difficult to estimate
 - Reverse path ACK may not be available or even desirable
 - Adds to the load
 - Use local holding times at each node
 - Find a sequence of nodes with smaller holding times for routing
 - Again, nodes that can unload packets quickly likely to experience fewer packet losses as well

- Each node maintains a pheromone value $\phi_i(t)$, $t = 0, 1, \cdots$
 - Pheromone value decays with time (discounting)

 $\phi_i(t) \leftarrow \phi_i(0) \cdot \exp(-\beta t), \qquad \beta > 0$

- After a successful transmission of a packet at time t

 $\phi_i(t^+) \leftarrow \begin{cases} \phi_i(t) + \alpha \cdot \Delta(D) \\ \text{if the packet originated at } i \\ \phi_i(t) + \Delta(D) \\ \text{if the packet originated elsewhere} \end{cases}$

where $0 \le \alpha \le 1$, *D* is holding time of the packet, and $\Delta : \mathbb{R}_+ \to \mathbb{R}_+$ (where $\mathbb{R}_+ = [0, \infty)$) (e.g., $\exp(-\xi \cdot D)$)

- Let $\mathcal{L}(t)$ denote the set of groups of unidirectional links that can be activated simultaneously
- For each unidirectional link $\ell := (i, j)$, let

$$\Delta \Lambda_{\ell}(t) := \frac{Q_i(t)}{\phi_i(t)} - \frac{Q_j(t)}{\phi_j(t)}$$

A set of links in

$$L^{\star}(t) := \arg \max_{L \in \mathcal{L}(t)} \sum_{\ell \in L} \Delta \Lambda_{\ell}(t)$$

is selected at time t = 0, 1, 2, ...

- Intuition
 - Want to estimate the "extra" capacity for carrying other nodes' packets
 - Credit smaller for forwarding its own packets (through pheromone increment)
 - Prefer nodes with smaller holding times and quicker unloading time
 - Reflects underlying mobility of nodes (through $\Delta(D)$)

Simulation

- Five nodes and a gateway
 - Time slotted into timeslots
 - One packet transmission per timeslot
 - Nodes move according to RWP mobility model
 - Heterogeneous mobility
 - Finite buffer size of 200 packets
 - Packets arrive at each node according to i.i.d. Bernoulli rvs
 - λ₀ = [0.025 0.03 0.04 0.023 0.02]
 - Tx radius of 0.2

Simulation

• Arrival rate given by $\beta \times \lambda_0 = \beta \times [0.0250.030.040.0230.02]$

