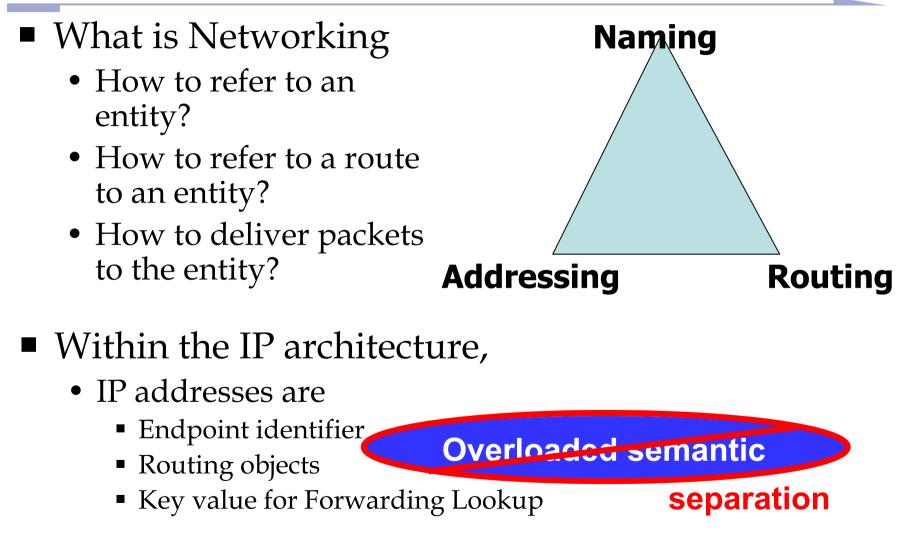


Identifier and Locator separation in IP network

July 10, 2007

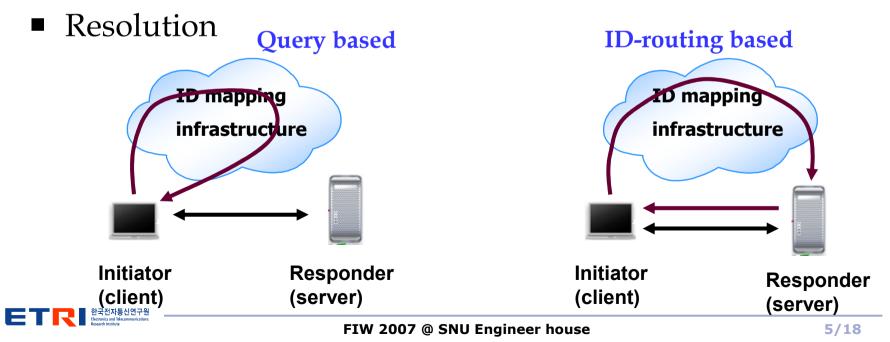

Taewan You (<u>twyou@etri.re.kr</u>) ETRI, PEC

Contents

- IP Addresses in Internet Architecture
 - Overloaded semantic
- Issues of ID/Loc separation
- Standardization Trends
 - Activities of IETF
 - Activities of ITU-T
- Conclusion

Addresses and the IP Architecture

Some considerations for ID/Loc separation


- Deployment
 - S1: identifier fully conventionally routable
 - S1.5: identifiers routable over another infra
 - S2: identifier locator mapping from the DNS
 - S3: advanced new id-based routing / query infra
- Implementation ID/LOC separation
 - Architectural
 - Vertical locus
 - Within app / library
 - In IP stack proper
 - Below IP

- Implementational
- Horizontal locus
 - Within host
 - First hop router
 - Site border router
 - ISP

Some considerations (Cont'd)

- Mapping identifier to locator
 - If name == identifier, this is a no-op
 - Otherwise
 - Need to work with existing name resolution mechanisms
 - Need to deal with security
 - Mapping entry manage: Push/Pull

Explicit in data packet or not?

- Is id->locator mapping explicit in every data packet, or implicit (only communicated in signaling plane)?
- Do we provide the ability for intermediate systems to see the identifier or not?
- Explicit (e.g., tunneling):
 - Identifier can be seen in packet by intermediate systems that change to look for it
 - Causes increase in packet size, more fragmentation
- Implicit (e.g., index or translation):
 - Identifier not findable in data packets
 - Asymmetric paths mean intermediate systems may not have mapping state

Standardization Trends: IETF & ITU-T

Recent Activities – IETF, IRTF, IAB

- Historical timeline
 - Packet switching invented (1962)
 - Internet concept invented (1974)
 - IP designed (~1978)
 - BGP designed (~1988)
 - CIDR designed (1992)
 - IPv6 designed (1995)
- Growing concern about scaling, transparency, multihoming, renumbering, provider independence, traffic engineering, IPv6 impact (1995-2006)
- IAB Routing & Addressing workshop (2006)

Recent Activities (Cont'd)

- What should be the 5 year goal?
 - Deploy & define fundamental Architecture
- R&A Directorate established
 - IRTF Routing Research Group recharter
 - R&A discussion list active (ram@iab.org)
- Internet and Routing ADs prepared for ROAP BoF
 - Operational Plenary, Internet Area, Routing Area, RRG, etc.
 - ID/Locator Split and Multi-level Locator
 - BGP table growth and dynamics

Solution directions for IETF

- RIB/FIB scaling engineering by microelectronics and router designers
- Update dynamics BGP adjustments, better operational practices
- Traffic engineering, Multihoming, e2e transparency, and mobility would benefit from architectural changes
 - Fundamentally change Architecture
 - Identifier/locator separation and/or multilevel locators form a hopeful approach

For solving the scalability problem, the research and exploration phase needed before standardization work

Solution directions (Cont'd)

Internet Area

- ID/Locator Split and Multi-level Locator
- Candidates
 - HIP (Host Identity Protocol)
 - SHIM6 (Site Multihoming by IPv6 Intermediation)
 - LISP (Locator/ID Separation Protocol)
 - PASH (Proxying Approach to SHIM6 and HIP)
- Routing Area
 - BGP table growth and dynamics
- Routing RG
 - Clean slate approaches

Taxonomy for solutions

- Host vs. Network based approach
 - Host based approaches
 - HIP, SHIM6
 - Network based approaches
 - GSE, LISP, PASH
- Direction vs. Indirection for data packet
 - Direction
 - Directly re-write address as locator
 - HIP, SHIM6, GSE, PASH
 - Indirection
 - Such as Map-and-Encapsulation, which use tunneling
 - LISP

Analysis

	LISP	PASH	HIP	SHIM6
Reduce RT	Loose spec. exists	Possible No design	Possible or incompatible	
Traffic Engineering	Loose spec. Possible inc exists No design		incompatible	Possible No design
Mobility & Multihoming	Loose spec. exists	Rough design exists	implement	Rough design exists & implement
Delegative names			implement	
IPv4 & 6 Interoperability	Rough design exists	Rough design exists	implement	Possible No design

ITU-T

ITU-T Study Group 13

- Next Generation Network Group (2005 ~ 2008)
 - Dealing with evolution and convergence of next generation networks including frameworks and functional architectures

	WP	Goal	Questions	Chair
	1	Project management and coordination	1/13, 11/13, 13/13	Mr. Helmut Schink (Siemens, Germany)
	2	Functional architecture and mobility	<mark>3/13</mark> , 6/13, 9/13, 10/13, 15/13	Mr. Chae-Sub Lee (Korea)
	3	Service requirements and scenarios	2/13, 7/13, 8/13, 12/13, 14/13	Mr. Naotaka Morita (NTT, Japan)
ETF	4	QoS and OAM	4/13, 5/13	Mr. Neal Seitz (USA)

Current Activities – ITU-T

- NGN Architecture (SG13, Q3)
 - Current related work
 - Progressed the Draft Recommendation
 - Requirements for ID/LOC separation (Y.ipsplit)
 - » ETRI have developing the document
 - Further work
 - Request NGN R2 to adopt ID/LOC separation design
 - Liaison work
 - IETF & ITU-T work

Conclusion

- Within the IP architecture,
 - There is overloaded semantic
 - Cause to the semantic, it is hard to support Scalability, Traffic engineering, Multihoming, e2e transparency, and mobility
- IETF Solution directions
 - Fundamentally change Architecture
 - Identifier/locator separation and/or multilevel locators form a hopeful approach
 - Possible Solution
 - GSE, HIP, SHIM6, LISP, and PASH
- ITU-T
 - Progressed the Draft Recommendation
 - Requirements for ID/LOC separation (Y.ipsplit)
- Liaison work
 - IETF & ITU-T work

References

- This is not original work and credit is due:
 - 68th IETF Meeting materials
 - https://datatracker.ietf.org/public/meeting_materials.cgi?
 meeting_num=68
 - 68th IRTF RRG meeting materials
 - http://www1.tools.ietf.org/group/irtf/trac/wiki/RoutingR esearchGroup.
 - ITU-T Study Group 13
 - http://www.itu.int/ITU-T/studygroups/com13/index.asp

Thank you !!!

Contact Information

Taewan You (Research Engineer)

Protocol Engineering Center (PEC) Electronics and Telecommunications Research Institute (ETRI)

Email: <u>twyou@etri.re.kr</u>, Tel: +82-42-860-4996, Fax: +82-42-861-5404