

Routing Optimization for Vehicular NEMO Networks

2007. 7.

Bo-Kyung Lee

CONTENTS

- Motivation
- Network Mobility (NEMO) Networks
- Vehicular NEMO Networks
- Advanced Intelligence Control Entity (AICE) Structure
- Handover Optimization
- Routing Optimization
- Future Internet
- Conclusion

Motivation

- Explosion of Mobile Devices
- LANs and PANs become mobile networks
- Network Mobility (NEMO)
- Vehicular NEMO Networks
- O Context-awareness
- Handover Optimization
- Routing Optimization

Network Mobility (NEMO) Networks[1]

- Entire network mobile as a unit and attached to the internet via Mobile Router
 - One or more IP Subnets
 - One or more Mobile Router
- Mobile Router changes its point of attachment
 - Only MR changes its IP address
 - Nodes behind MR don't change their own point of attachment

Vehicular NEMO Networks [1]

- NEMO attracts vast interest for vehicle mobile networks.
- Vehicular NEMO Networks
- Main Issue : Session Maintenance
- Bi-directional tunnel between MR and HA
- Routing
 - Encapsulation between HA and MR in both directions
 - Not optimal solution, but guarantee mobile networks are supported with minimal effort
- O Goals
 - Reducing signaling overhead
 - fast data delivery
- Routing Optimization
 - residence time
 - distance
 - vehicle's velocity

Vehicular NEMO Networks [II]

Advanced Intelligence Control Entity (AICE) Architecture

- O AICE Domain
- Networks Information
 - Access Router's address
 - Capacity
 - load
 - AP's list
 - attached MRs
- Vehicle Information MRs
 - residence time
 - distance
 - velocity

Handover Procedure[6]

Routing Optimization [I]

- Nested NEMO Tree Discovery[2]
 - aims at avoiding routing loops by organizing and maintaining a tree structure within the network of nested NEMO
- Approaches like Reverse Routing Header[3]
 - uses the recording of the sequences traversed Mobile Routers on the way out of the nested NEMO network
 - in order to forward traffic efficiently in the nested NEMO
 Networks
- Approaches like Optimized Route Cache Protocol[4]
 - insuring some level of optimized routing inside
- Approaches using Optimized Link State Routing Protocol[5]

Routing Optimization [II]

- Context-awareness is considered.
- Vehicle contains mobile routers.
 - Vehicle's residence time in AICE area
 - Vehicle's residence time in AR area
 - Size of AICE
 - vehicle's velocity
- O Average Residence time in (i, j)
 - (i,j): j Area of Access Router in i AICE area
 - L: the number of visiting of mobile router in (i,j)
 - $t_{i,j}(l)$: residence time of *lth* visiting
 - $T_{i,j}(l)$: average residence time in (i,j)
 - $T_{i,j}(l) = 1/L \sum t_{i,j}(l)$

Routing Optimization [III]

- O Average Residence time in access router area in AICE area
 - k: the number of Access router
 - T_i ,: average residence time
 - $T_{i,j}(l) = 1/L \sum t_{i,j}(l)$
 - $T_{i,.} = 1/k \sum T_{i,j} = 1/k \sum 1/L \sum t_{i,j}(l)$
- O Average vehicle's velocity; $V_{i,j}(l)$, $V_{i,.}$
- O If $V_{i,j}(l) > V_{i,.}$, then CoA is from Access router else CoA is from AICE.

Routing Optimization (IV)

O BU - low velocity

Routing Optimization (v)

O BU - high velocity

Routing Optimization (VI)

O Data Delivery: CN has MR's location.

Routing Optimization (VII)

O Data Delivery: CN has no MR's location.

Future Internet

- Some main features of wireless subnet in GENI
 - Mobility Support
 - Location Services
 - Sensor Network Integration
 - Vehicular Network Integration
 - etc

Conclusion

- Vehicular NEMO Networks will be integrated into Future Internet.
- Vehicular NEMO Networks support frequent handovers between various ARs.
- Context- awareness is important for efficient data delivery.
- AICE has information related to vehicle's mobility and networks.
- O By using vehicle's mobility information, routing is optimized.

References

- [1] Devarapalli, V., Wakikawa, R., Petrescu, A., and P.Thubert, Network Mobility (NEMO) Basic Support Protocol, RFC 3963, January 2005
- [2] P.Thubert, N. Montavont, Nested NEMO Tree Discovery, Work in progress, draft-thubert-tree-discovery-00.txt, IETF, May 2004
- [3] P.Thubert et al, IPv6 Reverse Routing Header and its application to Mobile Networks, Work in progress, draft-thubert-nemo-reverse-routing-header-06.txt, IETF, September 2006
- [4] R.Wakikawa, M. Watari, Optimized Route Cache Protocol, Work in progress, draft-wakikawa-nemo-orc-01.txt, IETF, October 2004
- [5] T. Clausen, E.Baccelli, R.Wakikawa, Route Optimization in Nested Mobile Networks(NEMO) Using OLSR
- [6] Hai Lin and Houda Labiod, Handover Optimization for vehicle NEMO Networks, NTMS 2007

