We Dream of GENI: Exploring Radical Network Designs

Scott Shenker UCB and ICSI

On behalf of many others

Terminology

radical = *non-incremental*

Designs derived from asking: "if we could redesign the Internet from scratch, what would we do?"

Talk Outline

- <u>Why</u> should we consider radical designs?
- <u>What</u> are some of these radical ideas?
- <u>How</u> can we test radical designs?

Three Obvious Statements

- We now live in a networked world
 - Connecting as important as computing
- The Internet is one of research's great triumphs
 Original design a product of research, not industry
- The Internet is a victim of its own success
 - Has changed the standards by which it is judged.....

Changing Context and Expectations

- Internet architecture has been incredibly successful
 - Scaled many orders of magnitude in size and speed
 - Accommodated diversity of uses and technologies
 - Has changed the context in which it operates
- Led to requirements not met by original architecture
 - These requirements pose deep intellectual challenges
 - Not "how to patch", but "how to design from scratch"
- Understanding requires rethinking basic paradigm
 - Coping may (not) require significant architectural changes

Environment: Trusted => Untrusted

- Requires a far more secure Internet
 - What do we mean by security?
 - What aspects are the network's responsibility?
- Major design challenges:
 - Resilience to large-scale external attacks (DDoS)
 - Resilience to compromised routers
 - Easy authentication of data
 - Forensics and auditing
 - Providing both accountability and privacy

-

Users: Researchers ⇒ Customers

- Customers demand high availability
 - Service is almost never interrupted
- Internet was designed for strong recovery properties
 - Recovering from serious failures
- How can the Internet provide 5 9's of availability?
 - ...and doing so in a cost-effective manner
 - Internet currently at 2-3 9's

Operators: Nonprofit \Rightarrow **Commercial**

- Operators must be able to manage their networks
 - Configuration
 - Troubleshooting
 - Middleboxes (proxies, firewalls, NATs, etc.)
 - Policy (routing, access control)
- What are the right abstractions for management?
 - What mechanisms best support them?

Usage: Host-oriented \Rightarrow **Data-oriented**

- Internet was designed around a host-oriented model
 - User tells client to contact another host (telnet, ftp)
- Current usage is mostly data-centric
 - User wants to access particular data or service
 - Does not care where that service is located
- Mismatch currently handled by *ad hoc* mechanisms
 Akamai, P2P
- Right abstractions for a data-oriented Internet?

Connectivity: E2E IP \Rightarrow **Intermittent X**

- Architecture assumes end-to-end IP connectivity
- In some niche settings, each link is intermittent and end-to-end connectivity is rare
 - Space, underwater, developing economies
 - Led to call for "delay-tolerant networking" (DTN)
- More generally want to shield applications from networking details
 - Opportunistic and context-dependent communication
- What's the right API to enable this generality?

New Grand Challenges

- Medicine:
 - All medical devices controlled over network
 - Security and reliability paramount
- Developing economies:
 - Little infrastructure or operational support
 - Must rely on self-organizing P2P-style designs
- Emergency response:
 - Rapid deployment and prioritized usage
 - Must operate under extreme conditions

Responding to These Requirements

- Could focus on incrementally-deployable changes
 - Might provide immediate, if partial, relief
 - Wouldn't know about long-term wisdom of changes
- Alternatively, we could think about the problem without constraints, with a "clean-slate"
 - Allows us to explore the conceptual underpinnings
 - Can later try to retrofit solutions onto the Internet

Clean-Slate

- Clean Slate is a means, not an end
 - No one expects direct adoption of radical ideas
- It is the insight that will have impact, by guiding the Internet's incremental evolution

 $Clean-slate \ designs \Rightarrow Insights \Rightarrow Better \ Internet$

- NSF's FIND program supports Clean-Slate research
 - Led by Dave Clark
 - See www.nets-find.net

Talk Outline

- <u>Why</u> should we consider radical designs?
 The Internet is facing fundamentally new challenges
- <u>What</u> are some of these radical ideas?
- <u>How</u> can we test radical designs?

Improving Availability

- Routing algorithms with zero convergence time
 - Even right after failure, routing finds path to destination
 - Uses state in packet-header
- Packets sent along multiple paths
 - Traditional routing with "bits"
 - Diffusive routing with duplicate suppression on data path
- In both cases, only those clients needing highavailability are imposing burden on network

Making All Names Self-Certifying

- Self-certifying: derived from hash of public key
 - Use SCNs for: addresses, hosts, ASes, data, services,...
- Well-known technique, but embedding it in architecture would provide significant benefits
 - Authenticate data without PKI
 - Secure routing (without PKI or address registry)
 - Mitigate DDoS (with smart NICs)

Improved Name Resolution

- DNS currently resolves names by "look-up"
 - Hard to handle replication and locality (Akamai)
- Some proposals (TRIAD) resolve names by "routing"
 - Name servers keep name-based routing table
 - Resolution request is routed towards closest copy
 - Name servers also support caching and RSS
- Embeds basic CDN support into infrastructure
 - Application-independent
 - Scalable

Improving Management

- Centralize the control plane
 - Routers become "dumb" forwarding boxes
 - All control decisions are made by centralized controllers, which have global view of network
- Makes configuration and policy easy
 - No longer requires distributed algorithm to achieve
 - No need for complicated management abstractions
- Reliability achieved by standard replication

Living Without Congestion Control

- Congestion control is constant subject of study
 - But do we need it at all?
- Why not always send as fast as possible
 - Expect packet drops, use rateless encoding
 - Stop when data can be reconstructed
- Routers need no buffers, only need to provide some degree of fair dropping
- Automatically leverages multipath routing

Dynamic Links

- Canonical routing paradigm:
 - Find best paths over fixed set of links
 - Respond to failures, but changes in topology are rare
- New technologies can dynamically switch lambdas
 - Can establish new "links" very rapidly
 - Traffic engineering becomes a very different problem
 - Core routers become very simple optical devices
- Other ways "links" will become outmoded:
 - Wireless
 - Broadcast satellites

New API

- Applications should be shielded from details of communication
 - Should operate on names and application data units
 - Not on addresses and byte-streams
- Many have advocated a publish/subscribe interface
 - Application doesn't know how data is served or obtained, merely states the name of the desired data
- Combines insights from DTN, Pub/Sub, Dataoriented, and many other efforts

Many More "Radical" Ideas

- These are just a few of the many ideas under discussion
- Motivated by "what is the right way to do this", not "how can we patch the existing Internet"

Talk Outline

- <u>Why</u> should we consider radical designs?
 - The Internet is facing fundamentally new challenges
- <u>What</u> are some of these radical ideas?
 - The community has promising new designs
 - But they are all untested
- <u>How</u> can we test radical designs?

Current Networking Testbeds

- Production testbeds:
 - Can't try radical network-level experiments
- Experimental testbeds:
 - No real users
 - Not much better than simulation
- Both kinds of testbeds:
 - Only one experiment at a time
 - Limited to sites directly connected to testbed
 - Hard to program

Leaves Us Unable to Evaluate Designs

- Conferences are littered with promising proposals
- But we can't tell the good ideas from the bad
 - Because we never see them in operation at significant scale, with real traffic
- Architecture is no longer an experimental science
 - It has become science fiction
- Given challenges we face, this must be overcome

The Testbed We'd Wish For

- Usable by many experiments simultaneously
- Easily programmable
- Can experiment on any level (optical to apps)
- Users can "opt-in" even from remote locations
- Reasonably large scale

GENI Will Grant Our Wishes

- GENI: Global Environment for Network Innovations
 - Project being proposed to NSF
- If approved, would be funded by NSF's Major Research Equipment and Facilities Construction (MREFC) account
 - MREFC is used to fund large experimental facilities
 - Telescopes, research vessels, etc.
- First MREFC initiated by computer science

GENI Design Principles

- An generalization of the PlanetLab approach...
- GENI is comprised of network resources
 - Links, nodes, subnets,...
- Resources are *virtualizable* and *programmable*
 - Can be partitioned among many researchers
 - Can implement radical new designs
- Researchers can program GENI at any level of abstraction
 - Optical, IP, application,....

GENI Design Principles (cont'd)

- Wide variety of networking technologies
 - Optical, wireless, sensors, phones,...
- Large-scale (~25 PoPs)
- Users can access GENI through overlay

Each Researcher Gets a "Slice"

And They Don't Interfere

User Opt-in

National Fiber Facility

+ Programmable Routers

+ Clusters at Edge Sites

+ Wireless Subnets

+ ISP Peers

GENI Will Enable Us To...

- Experiment at scale
- 1000s of simultaneous experiments
- Long-running services (operational experience)
- Integrate our designs across layers

Not Just for Networking!

- GENI originally motivated by networking agenda
- But can support a much wider research agenda:
 - Distributed systems
 - New applications
 - User studies
 -
- Today's talk was not about GENI's breadth, but about how much networking needs GENI

GENI Status

- GENI still in planning stage
 - Public workshop to be held in September
 - Call for whitepapers out by end of June
- Relevant bodies:
 - Interim planning group (was led by Larry Peterson)
 - GENI Science Council (chaired by Ellen Zegura and SS)
 - GENI Project Office (BBN, led by Chip Elliot)
- See www.geni.net (soon to be updated)

Summing Up

- We have a technical vision
 - Practically important and intellectually deep problems posed by new networking challenges
- We have funding for this vision
- We have prospects for an experimental facility
- But this is not enough!

Need Community Commitment

- Architecture is not simple sum of 300 papers
 - Product of broad synthesis and collaboration
 - Not your traditional academic behavior
- Community must be committed to working together to create a few shared visions of the future
 - Design
 - Build
 - Operate
- The FIND program is building that commitment

"Perfect Storm" Brewing in Networking

- Commitment to a "grand agenda"
 - Technical ambition: rethinking the Internet
 - Community commitment to work together
- Prospects for experimental facility
 - Learn by building and using, not just paper designs
 - Return architecture to its roots as an experimental science
- Conclusion: very exciting time in networking!