Building Networks with Open, Reconfigurable Hardware

1st Asia NetFPGA Developer's Workshop

Monday, June 14, 2010

John W. Lockwood

HTTP://ALGO-LOGIC.COM

letFPGA

CEO & Lead Consultant, Algo-Logic Systems

With input from:

NetFPGA Group, Stanford University

Hardware and tools available for university programs thanks to grants, donations, and/or partnerships from:

Algo-Logic

NetFPGA's Defining Characteristics

Line-Rate

- Processes back-to-back packets
 - Without dropping packets
 - At full rate of Gigabit Ethernet Links
- Operating on packet headers
 - For switching, routing, and firewall rules
- And packet payloads
 - For content processing and intrusion prevention

Open-source Hardware

- Similar to open-source software
 - Full source code available
 - BSD-Style License
- But harder, because
 - Hardware modules must meeting timing
 - Verilog & VHDL Components have more complex interfaces
 - Hardware designers need high confidence in specification of modules

NetFPGA = Networked FPGA

A line-rate, flexible, open networking platform for teaching and research

NetFPGA Reference Platform

NetFPGA System

Hardware & Software Components

Open Platform, Low-cost Hardware

NetFPGA Cards & Pre-built Systems

- Available from 3rd Party Vendors
- Or, build your system from parts
 - Details in the on-line Guide

Stanford's Rackmount Deployment

Statistics

- Rack of 40
 - 1U PCs
 - NetFPGAs
- Manged
 - Power,
 - Console
 - VLANs
- Provides 160 Gbps of full line-rate processing bandwidth

UCSD's NetFPGA Cluster

Inter-module Communication

Algo-Logic

Modular Architecture

NetFPGA Base Reference Router

Reference Router Control Software

Click the Details tab of the Quickstart window

This is the reference router pipeline – a canonical, simple-to-understand, modular router pipeline

Router Quickstart	
Configuration Statistics Details	
Reset to Defaults Output queue size in bytes : value 0 Output queue size in packets : value 0 Load From File 0	
uter Control Panel 🍥	
Help Window	
Router Quickstart	
onfiguration Statistics Details	
MAC RX Q0 CPU RX Q0 MAC RX Q1 CPU RX Q1 MAC RX Q2 CPU RX Q2 MAC RX Q3 CPU RX Q3 Input Arbiter Output Port Lookup	
Output Queues Output Queues MAC TX Q0 CPU TX Q1 MAC TX Q2 CPU TX Q2 MAC TX Q3 CPU TX Q3	

Control Software - Continued

Enhanced Router Pipeline

Algo-Logic

NetFPGA Hardware Block Diagram

Hardware Description Languages

• Concurrent

 By default, Verilog statements evaluated concurrently

• Express fine grain parallelism

- Allows gate-level parallelism

- Provides Precise Description
 - Eliminates ambiguity about operation

• Synthesizable

– Generates hardware from description

FPGA Look-Up Tables

Combinatorial logic is stored in Look-Up Tables (LUTs)

- Also called
 Function Generators (FGs)
- Capacity is limited only by number of inputs, not complexity
- Delay through the LUT is constant

Diagram From: Xilinx, Inc

Finite State Machines

Field Programmable Gate Arrays

CLB

- Primitive element of FPGA

Routing Module

- Global routing
- Local interconnect

Macro Blocks

- Block Memories
- Microprocessor

I/O Block

NetFPGA Reference Code & Modules

Structure of Libray Source Code

Structure of Project Source Code

Test-Driven Designs

Regression tests

- Have repeatable results
- Define the supported features
- Provide clear expectation on functionality

• Example: Internet Router

- Drops packets with bad IP checksum
- Performs Longest Prefix Matching on destination address
- Forwards IPv4 packets of length 64-1500 bytes
- Generates ICMP message for packets with TTL <= 1
- Defines how packets with IP options or non IPv4

... and dozens more ...

Every feature is defined by a regression test

Welcome to the Worldwide Community

NetFPGA @ SIGCOMM - Seattle, WA

NetFGPA @ SIGMETRICS - San Diego, CA

EuroSys - Glasgow, Scotland, U.K.

Workshop in Beijing, China

Workshop in Bangalore, India

NetFPGA Deployments

 Over 1,350 NetFPGA users with 1,300+ cards deployed at 150+ universities in 17 Countries worldwide

Worldwide Hardware Deployments - Feb 2010

NetFPGA Hardware in North America

USA Deployments - Feb 2010

NetFPGA Hardware in Europe

European Deployments - Feb 2010

NetFPGA Hardware in Asia

China, Korea, Japan, Taiwan, and India Deployments - Feb 2010

NetFPGA Deployments in Korea

Contributed projects

Project (Title & Summary)	Base Version	Status	Organization	Documentat
IPv4 Reference Router	2.0	Functional	Stanford University	Guide
Quad-Port Gigabit NIC	2.0	Functional	Stanford University	Guide
Ethernet Switch	2.0	Functional	Stanford University	Wiki
Buffer Monitoring System	2.0	Functional	Stanford University	Guide
Hardware-Accelerated Linux Router	2.0	Functional	Stanford University	Guide
DRAM-Router	2.0	Functional	Stanford University	<u>Wiki</u>
DRAM-Queue Test	2.0	Functional	Stanford University	Wiki
Packet Generator	2.0	Functional	Stanford University	<u>Wiki</u>
OpenFlow Switch	2.0	Functional	Stanford University	Wiki
NetFlow Probe	1.2	Functional	Brno University	<u>Wiki</u>
AirFPGA	2.0	Functional	Stanford University	Wiki and Pap
Fast Reroute & Multipath Router	2.0	Functional	Stanford University	<u>Wiki</u>
NetThreads	1.2.5	Functional	University of Toronto	Wiki
Precise Traffic Generator	1.2.5	Functional	University of Toronto	<u>Wiki</u>
URL Extraction	2.0	Functional	Univ. of New South Wales	Wiki
zFilter Sprouter (Pub/Sub)	1.2	Functional	Ericsson	<u>Wiki</u>
Windows Driver	2.0	Functional	Microsoft Research	Wiki?

... continued on next page ...

As of Feb 2010

.. And more on http://netfpga.org/foswiki/bin/view/NetFPGA/OneGig/ProjectTable

NetFPGA Designs (continued..)

... continued from previous page ...

Windows Driver	2.0	Functional	Microsoft Research	Wiki?
RED	2.0	Functional	Stanford University	<u>Wiki</u>
Open Network Lab	2.0	Functional	Washington University	<u>Wiki</u>
DFA	2.0	Functional	UMass Lowell	Wiki?
G/PaX	?.?	Functional	Xilinx	<u>Wiki</u>
RCP Router	2.0	Functional	Stanford University	<u>Wiki</u>
Deficit Round Robin (DRR)	2.0	Functional	Stanford University	Wiki
OpenFlow-MPLS Switch	2.0	Functional	Ericsson	Wiki
PTP-enabled Router	2.0	Functional	Stanford University	<u>Wiki</u>
Vlan Tag Handler	2.0	Functional	Stanford University	<u>Wiki</u>
Port Aggregator	2.0	Functional	Stanford University	<u>Wiki</u>
IP Lookup w/Blooming Tree	1.2.5	In Progress	University of Pisa	<u>Wiki</u>
KOREN Testbed	?.?	In Progress	Chungnam-Korea	<u>Wiki</u>
Virtual Data Plane	1.2	In Progress	Georgia Tech	<u>Wiki</u>
Deficit Round Robin (DRR) Input Arbiter	1.2	In Progress	Universidade Federal do Rio Grande do Sul (Brazil)	<u>Wiki</u>
Counter Braids	2.0	Functional	Stanford (Lu, Jianying)	<u>Wiki</u>
Tunneling NIC	2.0	In Progress	Stanford	Wiki
Multicore Prototype for Real-Time Switching	1.0	Available on Request	University of Waterloo	<u>Wiki</u>
End-to-End Ethernet Authorization	2.0	In Progress	Euskal Herriko Unibertsitateko	Wiki
Ultra-high Speed Congestion-control	2.0	In Progress	University of North Carolina	Wiki

.. And more on http://netfpga.org/foswiki/bin/view/NetFPGA/OneGig/ProjectTable

Other Network FPGA Platforms

NetFPGA 1G

 4 * 1 GigE
 4 Gbps

FPX

 2 * OC-48
 4.8 Gbps

Upcoming 10G

 4 * 10GE
 40 Gbps

Motivation for Network Security

• Viruses can be costly to businesses

- Annoyance to average users
- Use networks to propagate

Sample Attacks

- Nimda, Code Red, Slammer
- MSBlast
 - Infected over 350,000 hosts
- SoBigF
 - Infected 1 million users in first 24 hours
 - Infected > 200 million in the first week
 - Caused an estimated \$1 billion in damages to repair.

• End-systems difficult to maintain

- Operating systems become outdated
- Users introduce new machines on network

Example of SOC Firewall-FPX Platform

• Reference

 An Extensible, System-On-Programmable-Chip, Content-Aware Internet Firewall, by John W. Lockwood, Christopher Neely, Christopher Zuver, James Moscola, Sarang Dharmapurikar, and David Lim; Field Programmable Logic and Applications (FPL), Lisbon, Portugal, Paper 14B, Sep 1-3, 2003.

• More Information:

http://www.reprogrammablenetworks.com/

Regular Expression Matching

String Matching

- Allow for matching of fixed-length strings
 - HEX(683063423739) finds SoBig.F

Regular Expressions

- Allows for a wide range of matches
 - Case variations : (W|w)(A|a)(R|r)(H|h)(O|o)(L|I)
 - Wild-card characters: Albert ? Einstein
 - Strings of wildcards : A.* Einstein
- Content may begin anywhere in packet

Morphable Patterns

- Will require systems that can evolve

GUI to Select Search Strings

🚰 Online Support - Microsoft Internet Explorer										
<u>File E</u> o	File Edit View Favorites Tools Help									
🕞 Back 🝷 🕥 🗧 👔 🌠 🔎 Search 👷 Favorites 🔇 Media 🤣 🔗 🍓 📄 🗔										
Address 🙆 http://192.168.50.50/view_property.php 🔹 🏹 Go Links 🎽										
Select	Edit	Delete	Id	Search String	Description	Author	Value			
	EDIT	DELETE	17	!HEX(6c744e5076)	Clear and Present Danger	9	3.00			
	EDIT	DELETE	6	ViRuS	An Email Virus	15	5.00			
	EDIT	DELETE	13	Copyright .* WashU	WashU Copyright	12	1.00			
	EDIT	DELETE	128	(L I)(A a)(D d)(E e)(N n)	Terrorist Last Name	5	100.00			
	EDIT	DELETE	127	(O o)sama	Terrorist First Name	5	5.00			
	EDIT	DELETE	112	Patient (Confidential Record)	Confidential Information	17	5.00			
	EDIT	DELETE	113	Medical (Information Record)	Medical Record	17	5.00	ш		
	EDIT	DELETE	114	Do Not (Distribute Release)	Confidential Information	17	5.00			
	EDIT	DELETE	129	!HEX(1B688E6D)	Internet Worm	19	6.00			
	EDIT	DELETE	130	NASA (C c) (onfidential ONFIDENTIAL)	Confidential Information	20	5.00			
	EDIT	DELETE	133	!HEX(683063423739)	SoBigF Internet Worm (MIME64)	16	11.00			
								•		
۲						🥑 Internet				

Compiler to build Parallel Scan Engines

Content Matching Module

Sample ModelSim Waveform

🕂 wave - default												□×
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>I</u> nse	rt F <u>o</u> rmat <u>i</u>	<u>T</u> ools <u>W</u> indow										
😅 日 🎒 👗 🖣	a 🛍 🚧	🔉 🔉 T= 🛨	Г			Ŧ	X	3+				
<mark>, ready_l_out</mark> — INPUT <u></u> dataen_in ⊞ d_in	1 0 00000000	00000322 (4500	0020 (00000)		Src IP		it IP		12300001 (000080	20 (00000	000	
ば sof_in eof_in sod_in tca_in → OUTPUT →→→→	0 0 1								TTL <	> 0 =	Src IP	
dataen_out ⊡ d_out _ sof_out _ eof_out	0 00000000 0 0	0000000						(00000322)/	15000020 (000000	00 (3F 12	2E3 (80FC9913	<u>x</u>
sod_out sod_out tca_out ⊕– <mark>,</mark> data_flop		00000000 (0000	0322 (45000	<u>320 (00000</u>	000 <u>(</u> 3F112				0000000 (123000	01 (00008	020 (00000000	
📕 state	idle	idle	<u>(ver</u>	<u>(flags</u>	<u>)(ttl</u>	<u>(srcip_ttl_1</u>	<u>(dstip_ttl_2</u>	(ports ttl 3 ((xmit	<u>(idle</u>		\Box
	6000 ns 581 ns	6	DO	62)	640		660	680		700	
•	4											\geq
585 ns to 706 ns												- //

Throughput Comparison

- Sed was run on different Linux PCs
 - Dual Intel Pentium III @ 1 GHz
 - 13.7 Mbps when data is read from disk
 - 32.72 Mbps when data is read from memory
 - Alpha 21364 @ 667 MHz
 - 36 Mbps when data is read from disk
 - 50.4 Mbps when data is read from memory
- Software results are 40x slower than FPsed

String Processing Benchmarks

Associative Match in FPGA TCAM

- **Content :** Content Vector = "00000011" (*binary*) = x"03" (*hex*)
- Source IP Address : 128.252.5.5 (dotted.decimal)
- **Destination IP Address**: 141.142.2.2 (dotted.decimal)
- Source Port : 4096 (decimal) = 1000 (hex)
- **Destination Port** : 80 (decimal) = 50 (hex)
- Protocol : TCP (6)

TCAM Function in FPGA Hardware

Data Buffering & Per-flow Queuing

• Flow Buffering

- Maintain linked list of packets
- Track head and tail pointers for each list
- Track free memory

Queue Management

- Enqueue packet
- Dequeue packet

Schedule Traffic Flows

Flow Buffering

Queue Management

Architecture of the SOC Firewall

Resulting SOC-Firewall FPGA Layout

지원 전원 전 그는 바람이 나는 것을 가지 않는 것이다.	ayered Proto Vrappers)col	Per-fi Queu	
Regular Expression Payload Filtering TCAM Header Filtering		Region for Ex Plug-in Mod		Packet Store Manager

Upcoming NetFPGA 10G (4 * 10 GE)

40 Gbps NetFPGA PCB

Algo-Logic Systems

 Founded by Dr. John W. Lockwood, the Algo-Logic ® team has extensive experience building routers, data center switches, and network processing circuits in ASICs and FPGA logic. Algo-Logic specializes in mapping network algorithms into hardware logic. The founders are experts in developing, documenting, and prototyping logic and systems of reprogrammable networks.

- http://Algo-Logic.com
- Email
 - Solutions@Algo-Logic.com
- Phone
 - (650) 395-7026
- Fax
 - (650) 498-8296

- Office Address
 - 530 Lytton Ave
 Second Floor
 Palo Alto, CA 94301

Consulting Services

- Design and Build Hardware-Accelerated Network Systems
 - Network Architecture
 - Data-center networks
 - Network security
 - Content-aware networks
 - On-chip interconnect
 - Performance Analysis
 - Mathematical system modeling
 - Real and synthetic trace simulation
 - Live measurements in hardware prototypes

Design Services

• Implementations of Network Algorithms

- Hardware Logic in synthesizable high-level HDLs, Verilog, and VHDL
- Ultra low latency processing
- System-level software with APIs in C and C++

Architectures for Next-Generation Network

- Data-center networks
- Trading-floor networks
- Network security
- Content-aware networks

• Systems Architecture and Development

- FPGA design
- Verification and test bench development
- Customization of IP cores
- System-level Integration

Design, develop, and verify line-rate network processing systems at multi-Gbps rates.

Extended Training

- Customized training services to help your team build your own network systems in hardware.
 - Experience in teaching the world-wide NetFPGA tutorials
 - Customized training specifically tailored for your company's skill level and requirements
 - Hands-on training with live hardware systems

1st Asia NetFPGA Developer Workshop

June 13-14, 2010 @ KAIST, Daejeon, Korea

http://fif.kr/AsiaNetFPGAws

• Program Committee Chairs

- John W. Lockwood
 - (Algo-Logic Systems)
- Seung-Joon Seok
 - (Kyungnam University)

Local Arrangement Co-Chairs

- Sue Moon
 - (KAIST)
- Jaeyong Lee
 - (Chungnam National Univ.)

- Advisory
 - Nick McKeown
 - (Stanford University)
 - Dae Young Kim
 - (Chungnam University)

• Many Thanks

- Xilinx
- NetFPGA Group
- Sponsors:

Algo-Logic

Program Committee Members

- Jun Bi
 - (Tsinghua University)
- Gordon Brebner
 - (Xilinx)
- Michael Ciesla
 - (UNSW)
- Yu-Huang Chu
 - (Chunghwa Telecom)
- Sun Moo Kang
 - (NIA)
- Eric Keller
 - (Princeton University)
- Jongwon Kim
 - (GIST)
- Taekyoung Kwon
 - (Seoul National Univ.)
- Martin Labrecque
 - (University of Toronto)

- Yukuen Lai
 - (Chung-Yuan Christian Univ.)
- Jaeyong Lee
 - (Chungnam National Univ.)
- John W. Lockwood
 - (Algo-Logic Systems)
- Kevin Xie
 - (Xilinx)
- Sue Moon
 - (KAIST)
- Andrew, W. Moore
 - (Cambridge University)
- Akihiro Nakao
 - (University of Tokyo)
- Seung Yeob Nam
 - (Yeungnam University)
- Seung-Joon Seok
 - (Kyungnam University)

- Seung-Yong Park
 - (Yonsei University)
- Hwangjun Song
 (POSTECH)
- Charlie Wiseman
 - (Washington University)
- Chong Ho Yoon
 - (Korea Aerospace Univ.)
- Martin Zadnik
 - (Brno University of Tech.)
- Hongyi Zeng
 - (Stanford University)
- Young Cho
 - (USC-ISI)

Welcome

