

Empowered by Innovation

Data Center Quantized Congestion Notification (QCN): Implementation and Evaluation on NetFPGA

2010 June 14th Masato Yasuda (NEC Corporation) Abdul Kader Kabanni (Stanford University) In data centers, there is a movement of Network Convergence The spec of Converged Enhanced Ethernet (CEE) has been discussed in IEEE 802.1 standard committees

Congestion Control Mechanism in CEE

In CEE, it has Congestion Control Mechanism

 Non-TCP traffic (storage, media) can avoid network congestion

Congestion Notification (CN)

- The spec of Congestion Control Mechanism in CEE
- It is specified in IEEE802.1Qau in Data Center Bridging Task Group
- We proposed QCN (Quantized Congestion Notification) and finally accepted as a standard in March 2010.

Significant restrictions/requirements for CN

No per-packet ACKs	No way to know round trip time. Not automatically self-clocked like TCP. (The algorithm need to have counters for self-clocking)
Links can be paused	Links can be paused by pause mechanism but CN is needed to avoid congestion spreading (pause spreading to innocent paths).
Sources can start at line late	Unlike TCP slow start, sources can come on at the full line rate of 10Gbps
Stable	We must avoid queue oscillation which causes overflow (causes link pause) or underflow (lose utilization)
Simple	The algorithm should be simple enough to be implemented in hardware (for 40G or 100G processing)

QCN Overview

QCN (Quantized Congestion Notification)

QCN: Congestion Control Mechanism at Layer 2
Proposed by our group and accepted in IEEE 802.1Qau

Terminology:

- Congestion Point: Where congestion occurs, mainly switches
- Reaction Point: Source of traffic, mainly rate limiters in Ethernet NICs

QCN Algorithm: Congestion Point (CP)

QCN Algorithm: Reaction Point (RP)

Rate Control

- Rate Decrease: Feedback from CP
- Rate Increase: Increase by itself
- Rate Increase Algorithm: Averaging Principle
 - Based on BIC-TCP: Works without ACK

Page 8 © NEC Corporation 2009

Empowered by Innovation

Implementation

Current QCN Implementation

World's first Hardware QCN Full implementation

- It is fully functional
- We confirmed that the result matches OMNet++ simulation result!

QCN-NIC

- Multiple Reaction Points
- Improved Token Bucket Rate Limiter

QCN-Switch

Multiple Congestion Points

Compliant with Pseudo Code v2.3 [1] 1Gpbs Platform (NetFPGA)

[1] QCN Pseudo Code v2.3: http://www.ieee802.org/1/files/public/docs2009/au-rong-qcn-serial-hai-v23.pdf

Data Frame (Normal Ethernet UDP/IP Frame)

QCN NIC Block Diagram

Token Bucket Rate Limiter

Token bucket algorithm avoiding burstiness

QCN Switch Module Structure

Evaluation

QCN Hardware Evaluation System

Page 16

Parameters (QCN)

NIC

- FAST_RECOVERY_THRESHOLD = 5
- AI_INC = 0.5 Mbps
- HAI_INC = 5 Mbps
- BC_LIMIT = 150 KB (30% randomness)
- TIMER_PERIOD = 25 ms (30% randomness)
- MIN_RATE = 0.5 Mbps
- GD = 1/128

Switch

- Quantized_Fb: 6 bits
- Q_EQ = 33 KB
- W = 2
- Base marking = 150 KB, and varies according to the lookup table in the pseudo code (30% randomness)

Based on QCN Pseudo Code Parameters

Evaluation Result

Hardware Evaluation Result (1RP), RTT=100usec

NIC: Rate

Switch: Queue Length

NEC

OMNet++ Simulation Result (1RP), RTT=100usec

Simulation result well matches the Hardware Evaluation Result !

Empowered by Innovation

Hardware Evaluation Result (8RPs), RTT=1msec

It also matches OMNet++ Simulation Result with the same parameter

Demonstration

We presented/demonstrated QCN theory and implementation

QCN Implementation on NetFPGA Board

- All QCN Functions are implemented (Pseudo Code v2.3)
- QCN-NIC
 - Multiple RPs are ready
 - Improved Token Bucket Rate Limiter
- QCN-Switch
 - Multiple CPs are ready
 - Binary Search Logic for Fb Calculation
- We have proved that our QCN implementation achieves expected performance.
 - The result matches OMNet++ Simulation