

Implementing On-line Sketch-Based Change Detection on a NetFPGA Platform

Y.K. Lai, N.C. Wang, T.Y. Chou, C.C. Lee, T. Wellem, H.T. Nugroho

1st Asia NetFPGA Develover Workshop, June 13-15, 2010, KAIST, Daejeon, South Korea

Introduction

- This project implements a Sketch-based change detection on network traffic on NetFPGA
- The change detection scheme is based on the scheme proposed by Krishnamurthy *et al*. [1]
 - Software implementation
 - Uses k-ary sketch

[1]. B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, "Sketch-based change detection: methods, evaluation, and applications," Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement, Miami Beach, FL, USA: ACM, 2003, pp. 234-247.

1st Asia NetFPGA Develover Workshop, June 13-15, 2010, KAIST, Daejeon, South Korea

Data structure to build summary of data stream

- Space-efficient
- Accuracy with probabilistic guarantee

K-ary sketch

- Array of counters C[i][j] (i=1...H, j=0...K-1)
- Indexed by 4-Universal hash functions, $h_1...h_H$

1st Asia NetFPGA Develover Workshop, June 13-15, 2010, KAIST, Daejeon, South Korea

Sketch-based Change Detection

Sketch module

- Summarizes traffic using sketch for each time interval,
 t
- Observed Sketch, S_o(t)

Forecast module

- Using the observed sketches from past intervals, it uses a *forecasting model* to build *Forecast Sketch*, *S_f(t)*
 - Forecast model: Moving Average (MA), EWMA, ...
- Computes the Forecast Error Sketch, $S_e(t)$.
 - $S_e(t) = S_o(t) S_f(t)$

Sketch-based Change Detection

Change detection module

 Computes alarm threshold, T_A based estimated 2nd moment of S_e(t) and parameter T determined by application

$$T_A = T. \left[F_2^{estimate}(S_e(t)) \right]^{\frac{1}{2}}$$

- \circ S_e(t) is used to determine significant changes
- For any key a, the estimated forecast error is ESTIMATE(S_e(t), a)
- Flows with *estimated forecast error* greater than T_A will be reported

System Architecture

Hardware Components

Sketch Module

- Sketch update process
 - 2 sketches in SRAM

Estimator

\Box How to get the key to query $S_e(t)$?

- We use the keys after $S_e(t)$ has been constructed
 - Use current incoming key to query previous forecast error sketch
- Advantages
 - Avoid the need of two-pass ("touch" the stream twice)
 - Avoid the need to store all the keys
- Drawback
 - Miss the keys that do not appear again after they experience large change

Graphical User Interface (GUI)

Evaluation

Trace-driven experiment

• MAWI trace files

Trace file	Duration	Number of distinct flows (based on SIP)
200302270000.dump	15 min.	51,788
200304022100.dump	15 min.	286,369

Parameters

 \bigcirc H=3, K=32K Window Size (W) = 3, Interval = 60 seconds

Hash function

• 4-Universal, pipelined multiplier

Evaluation

Testing Topology

• Sketch update testing

Accuracy testing

1st Asia NetFPGA Develover Workshop, June 13-15, 2010, KAIST, Daejeon, South Korea

Evaluation

Sketch update testing

• Metric: Percentage of packet loss

Accuracy

• Metric: False negative and false positive rates

Resource Utilization

• Metric: Percentage of resources used

Results

Sketch update

- Can achieve line-rate update
- 0.16% packet loss under stress test using 4 Gbps minimum-sized frame

Accuracy

 The system can successfully detect flows (source IPs) whose change is above threshold

Accuracy with various threshold parameter T

Т	0.8	0.6	0.4	0.2	0.1	0.05	0.02
False Positive	0	0	0	0	0	0.005	0.008
False Negative	0	0	0	0.05	0.11	0.14	0.17

Results

Software simulation

○ H=3, K=4K

Results

Resource Utilization

• 4-Universal hash (pipelined multiplier)

Resources	Utilization	Percentage
Slice Registers	22,687 out of 47,232	48%
4 input LUTs	20,433 out of 47,232	43%
Occupied Slices	16,671 out of 23,616	70%
RAMB16s	144 out of 232	62%
MULT18X18s	72 out of 232	31%
IOBs	356 out of 692	51%

Conclusion and Future Work

We have implemented a network traffic change detection system on NetFPGA

• Can achieve online, one-pass change detection

Further improvements

- Integration with router or switch design
- Network-wide anomaly detection system

Thank you

1st Asia NetFPGA Develover Workshop, June 13-15, 2010, KAIST, Daejeon, South Korea