Remodeling the NetFPGA architecture for

content processing and filtering

Bokil Kanchan
Centre for Development of Advanced
Computing (C-DAC)
68, Electronics City
Bangalore, India
91-80-28523300

kanchan@ncb.ernet.in

ABSTRACT

The networks today operating at speeds of gigabits per second are
getting more and more vulnerable to network attacks. There is a
need for a smart, high speed, reliable and scalable system to
prevent network intrusions. This paper presents our approach to
provide a robust solution by remodeling NetFPGA reference
architecture for deep packet inspection such that the packet
processing delay is highly negligible. We discuss our
implementation of devising high speed FSMs in a pipelined
architecture that has been validated for maintaining throughput of
1 Gbps with a set of SNORT based signatures.

General Terms
Algorithms, Security, Design.

Keywords
SNORT, intrusion prevention system, NetFPGA.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Conference’10, Month 1-2, 2010

1LINTRODUCTION

A typical network-based intrusion prevention system sits on
the perimeter of a network to be protected. The IPS sensor logs
the alerts by performing either (a) Simple pattern matching of
known signatures against the contents of individual packets or (b)
Stateful pattern matching of an entire session by tracking the state
of each communication transaction. It also blocks the malicious
traffic within the network keeping it secure.

An IPS sensor constitutes of a large database of signatures to
be matched, a buffer for incoming traffic and a rule engine.

Given a rule set of signatures, it is the rule engine that
decides the performance of the sensor. Performing the signature
matching at line rate effectively, with a huge set of patterns has
always been a challenging task while designing an IPS sensor.
The biggest bottleneck lies in number of patterns the sensor can
operate against the speed at which it performs.

In this paper we present a solution that comprises of dividing
Snort based signatures [1] into subsets of protocol based
signatures accompanied by high speed NetFPGA card [2] with a
pipelined architecture. We discuss our approach, design
specifications, data flow and the architecture for IPS sensor
implemented on NetFPGA platform. The key part is to choose
only those signatures (to be matched by rule engine) whose
protocol category matches with the protocol field of incoming
packets. For e.g., for a packet with protocol field tcp (06), match
only the tcp signatures and ignore the remaining ones.

The major contributions of this paper are, (a) devising an
FSM technique for hardware based content matching (b)
remodeling the reference architecture of NetFPGA for intrusion
analysis (c) validating our solution by using Layer 4-7 equipment.

Further sections are organized as follows: Section 2 briefly
reviews the related work. Section 3 sheds light on design

specifications. Section 4 discusses system architecture in detail.
Section 5 shows the results obtained upon the tests conducted.
The paper is concluded in Section 6.

2.RELATED WORK

There have been various algorithms including Boyer-Moore
[3], Aho-Corasick [4] and Wu-Manber [5] for content matching
algorithms. We analyzed the techniques used in these algorithms
to model them on fpga.

We studied various mechanisms used till now to implement
string matching algorithms on variety of platforms including
FPGAs [6] and ASICs [7] . We also find research papers on
Bloom filters [8] to speed up the string matching algorithms. We
also find ideas presented for regular expression matching [9]. The
paper [10] discusses use of content addressable memory for
intrusion detection.

3.THE DESIGN
Our approach :

Our goal is to develop a system that sits at the edge of a LAN
and protects the internal network from being attacked. We have
used the SNORT signatures to design the system. There exist
many network architectures and mechanisms such as honeypots
and demilitarized zone to know the suspicious activities. We took
the SNORT ruleset as the skeleton for its commercial applicability
and suitability for any small to large networks.

SNORT signatures :

SNORT is an open source software by Sourcefire which
refers to a large signature database for intrusion detection.
SNORT [1] releases its signature set which is referred by many
intrusion prevention systems. It also updates the database for
newly found network attacks.

A SNORT signature typically describes various parameters
the packet has to be tested upon, like the protocol, port number,
from or to internal network, content in the payload. It also
describes the action to be taken upon matching of all the
parameters within one signature. There exists a huge set of
signatures to be tested for incoming packet with more that one
such contents with much complexity. The challenges involved in
designing the system are,

(a) Performing the signature matching at line speed.

(b) Including the entire large set of signatures in the system.

Design Specifications :

An application for intrusion detection or prevention system
running on top of an operating system generally adds delays in the
process of content matching. As we go down from application

level to kernel level and that to hardware level, we observe
improvement in the throughput of the system. We found
NetFPGA a suitable platform to develop the sensor by
implementing a pipelined architecture in it.

As per the goals of the project, the system should have two
interfaces to enable the connection to external and internal
networks. Please refer to Figure 1.

External Internal

Network

Intrusion

Router

Figure 1. IPS in the network

All the traffic from internal network is passed to external one and
vice-versa. And with the addition of malicious activity sensor in

between, the data flow will be as shown in Figure 2.
sensor 1

Internal

Figure 2. Individual sensor for each interface

External
Network

This basic design comprises of an individual sensor for each
interface by avoiding the servicing of one port at a time thus
improving the throughput, i.e. implementation of only one sensor
for both interfaces and servicing one interface at a time reduces
the throughput to half. Also, by implementing a dedicated sensor
for each interface enables us to divide the signature set into two
parts, (a) rules for the traffic entering into the internal network
(b) rules for the traffic leaving the internal network.

4.SYSTEM ARCHITECTURE

The reference router

The NetFPGA board has four Ethernet ports. The card is
inserted in the PCI slot of the host PC. The NetFPGA driver
module is inserted in the kernel on the host PC. The four Ethernet
ports are identified by four unique device IDs in the kernel. The
NetFPGA card has four CPU ports each for four Ethernet ports.
There exists a separate queue for Receive and Transmit sections
(Figure 3) on each of Ethernet and CPU ports.
Figure 3 is the reference architecture diagram by NetFPGA
developer's guide.

B
g3l
B
il
BEIC
§alll
BRI
R3(I

Input Arbiter
Output Port
Lookup

AHE R

Figure 3. Reference Router

The architecture maintains a module header (Figure 4) for each
received Ethernet frame to direct the frame correctly to its

destination.
Destination Length in Source Length in
Port Word Part Bytes

Figure 4. Internal Module Header

As shown in Figure 3, the input arbiter services each of the
eight Rx queues in sequence and passes the data to output port
lookup. The output port lookup reads the destination port in
module header to put the frame in appropriate output queue out of
eight output queues. The output queues are connected to
appropriate Tx queues i.e. CPU and Ethernet queues.

The NetFPGA Ethernet ports (PHY) are capable of operating
at 1Gbps. Within the card, 64 bit data is operated at the internal
clock speed of 125MHz. This produces 8 Gbps operating
capability of the NetFPGA, which gets equally distributed over
eight Rx queues by the round-robin input arbiter, to produce
ultimate 1Gbps of Ethernet speed.

Modification in the data flow

Consider the data flow from ethernet port nf2cO to ethernet
port nf2cl. The incoming data in Rx queue of port 0 has to be
forwarded to Tx queue of port 1 and vice versa. Once the frame
enters in the Rx queue, the start of any frame resets all the finite
state machines to a predefined state. As further data within the
frame is received, the packet decoder stores the fields in the
ethernet frame and also knows the protocol. According to the
protocol, respective FSMs are activated.

A copy of incoming packet is maintained in the block RAM.
The frame information is updated in the frame information table.
Once the entire frame is done with the FSMs, the decision is
written in the information table. The Figure 6 explains the content
matching module.

Tx queue 0

Content
matching O

Figure 5. Modified Reference router

Content

matching 1

With the end of frame and "rdy" signal from all the FSMs,
the decision block reads the entry to pass/block the frame. All the
traffic to be passed is copied from block RAM to the Tx queue
with pipelining the next frame to get processed. If any of the
pattern is matched, that particular frame is dropped.

Content matching module
The malicious activity sensors for each interface will sit in
between this design.

Frame
information
table

! | Decision
unit
Tx Queue

Decode and
signature subset
activation

Figure 6. Block diagram for Content matching module

The content matching module serves as the controlling
element for the system. It generates the control signals for Block
RAM by identifying the ethernet frame. It comprises of
submodules as Block RAM controller, packet decoder and subset
activator, frame information table and set of signatures described
in FSMs.

Flow of data within the interfaces

The malicious activity sensor has to have two Ethernet ports
as per the project requirement. It should have two CPU ports to
pass the attack information to the host PC. Since this comes to
four Rx queues and four Tx queues, the reference design is halved
by instantiating each of nf2_mac_grp and cpu_dma_queues twice

instead of four times. Since we need to pass the traffic within two
interfaces plainly, we omitted the user_data_path.

This led the elimination of the input arbiter, output port
lookup and output queues.

This modification simply connects the two Ethernet ports on
the card to each other with the content matching module sitting
within them.

Packet Decoder and signature subset activator

80 00 20 7A 3F 3E
Destination MAC Address

B0 00 20 20 3A AE
Source MAC Address

08 00
EtherType

00 20 20 34

Payload CRE Checksum

MAC Header
(14 bytes)

| P, ARP, stc. I

Data
{46 - 1500 bytes) {4 bytes)

Ethernet Type Il Frame
(6410 Wi bytes)

Figure 6. Ethernet Frame Format

The packet decoder is instantiated one for each of the two
interfaces. It decodes the ethernet frame 802.3 (Figure 6) and
stores the protocol field values in predefined registers. As soon as
the protocol of incoming packet is known, the
signature_subset_activator activates all the signatures to be
matched against, for that particular protocol.

This avoids redundant verification of fields for each

signature in the database.

Frame information table

Once the content matching module receives one Ethernet
frame, it is sent to the set of signatures. Since the frame can be
passed to appropriate Tx queue only when entire frame is matched
against all the signatures, the frame has to be copied in a buffer.
This is done by maintaining a copy of incoming frame into a bock
RAM and also an information table (Table 1) to know the start
address, end address in the RAM, the decision bit whether to pass
the frame or block it and a valid bit to reuse the table entries. The
controlling FSM unit writes the decision in the appropriate entry
and raises the valid bit. The decision unit who is waiting on the
valid bit, reads the decision to pass/block and makes the valid
signal zero. (Decision : O for pass, 1 for block).

Table 1. Frame information table

Entry | Start address End address | Decision | Valid
0 9'b000000100 | 9'b000011000 0 0
1 9'b000011001 | 9'b000100010 1 1

Set of Signatures

As discussed before, the rule engine is the crucial part in the
system design, which can be time costly operation. To avoid any
packet inspection delay to be added in the data flow, fast content
matching mechanism has to be implemented.

We have developed a unique deterministic finite state
automata for each of the signature pattern. Each FSM (finite state
machine) has a valid line which is activated by the packet decoder
and signature subset activator. As a new frame begins, each 64 bit
data is matched against the signature and a state is maintained
according to the match (Figure 7). The number of states within a
signature is equal to the number of characters within the content.
Figure 8 demonstrates the flow diagram for FSM. The example
shows state machine designed for a signature with content "abc".

Incoming
data

match=0 match=0 match=1

match=0

Figure 7. State digram for pattern “abc”

The keywords like depth, within, etc in the SNORT
signatures are implemented in form of a counter for incoming
bytes and maintaining the current state.

[new frame ?

+yes

default states for
FSMs

€s

get the data and
compare byte by
byte

+yes g no

change state if

-

match occurs

* yes
[end of frame ?]‘

update the table
entry

Figure 8. Flow digram for typical FSM

== content - matching_module
4 [aaj_test_content_matching/dk
4 [agj_test_content_matchingfreset
4. [a@j_test_content_matching/in_wr_0
Jaaj_test_content_matching/in_data_0
[aaj_test_content_matching/in_ctrl_0
[aaj_test_content_matching/in_rdy 0
Jaaj_test_content_matching/out_wr_direct 2
[aaj_test_content_matching/out_data_direct_2
Jaaj_test_content_matching out_ctrl_direct_2
[aa]j_test_content_matching/out_rdy_direct_2
— fam_1
[aaj_test_content_matching/UUT/data_0/fsm_1/data_valid
Jaaj_test_content_matching/UUT/data_0/fsm_1/in_data
[aaj_test_content_matching/UUT/data_0/fsm_1/start_of frame
[aaj_test_content_matching/UUT/data_0/fsm_1/rdy
test_content_matching/UUT/data_0/fsm ﬂmatm
:_content_matching/UUT/data
,faa] test_content_matching/UUT/data O,ffm_l,l..tzte next
Jaaj_test_content_matching/UUT/data_0/fsm_1/match_d
[aaj_test_content_matching/UUT/data_0/fsm_1/input_array_d
Jaaj_test_content_matching/UUT/data_0/fsm_1/index
[aaj_test_content_matching/UUT/data_0/fsm_1/rdy_fsm
Jaaj_test_content_matching/UUT/data_0/fsm_1/start_index2
Jaaj_test_content_matching/UUT/data_0/fsm_1/current_data
Jaaj_test_content_matching/UUT/data_0/fsm_1/match_flag

i i 40202020 £ .
I:)W
e m——

N N S W

Cursor 1

Figure 9. Modelsim waveform sample

We can see in Figure 9, which is Modelsim waveform
sample, the progression of index pointing to 8 bytes of incoming
frame and the match signal upon successful comparison on a
pattern.

The NetFPGA can operate on 64 bits of data at 125 MHz
clock frequency, which reflects the packet processing speed of
8Gbps. Since the PHY operate at 1Gbps, it is necessary for the Tx
queue and Rx queue to process packet data at 1Gbps. Thus the
content matching module can take 8 clock cycles per incoming 64
bit data to match with the known signature.

S.VERIFICATION AND RESULTS

The functionality test was carried out in two ways, (a) By
passing real time traffic samples on NetFPGA IPS system and
configuring the Spirent Layer 4-7 equipment to see the results. (b)
By running test cases on Modelsim. The aim was to verify the
system operation for a particular set of signatures. The results
show that the system forwards good traffic to other end and
blocks all the malicious traffic.

To perform the throughput test, Spirent Layer 4-7 equipment
was used to pump traffic within the system. Various traffic
patterns were used for testing. The best case can be described as

passing of non-malicious traffic and running all FSMs to end.
This was achieved by maintaining the throughput upto 1Gbps.

Verification Environment

The Spirent Layer 4-7 equipment was configured to pump
HTTP traffic starting at the rate of 1Mbps (Figure 10). To perform
the throughput test, the HTTP traffic rate was increased upto 970
Mbps gradually and the test was conducted for about an hour.

“a

NetFPGA

Server Client

Spirent Layer 4-7

Figure 10. Verification Environment

To perform the accuracy test, various test cases were written
and the run on Modelsim. Also, to ensure the working of the
system at high incoming rates, the payload in HTTP traffic on
Spirent equipment was added with malicious traffic with known
percentage like 50% malicious payload. Then the output traffic
was measured with respect to the incoming traffic and the
accuracy was verified.

6. CONCLUSION

We present the intrusion prevention system architecture
implemented on NetFPGA platform. The high speed pattern
matching mechanism and pipelined architecture enable the system
throughput maintained to that of NetFPGA board. We propose the
distribution of SNORT signature set to eliminate the unnecessary
comparisons.

The paper provides a mechanism to store and forward the
traffic upon decision in an organized way.

We look at IP defragmentation and tcp reassembly as our
future work which will enable us to include some more signatures
into the design. On the similar lines, stateful packet inspection
improves the accuracy by doing the inspection on entire session,
which seems to be future experimentation.

7.ACKNOWLEDGMENTS

We thank Mr. Subramanian for giving us an opportunity to
implement our ideas on a new platform, the NetFPGA. Special

thanks to our team for timely help in the development and testing.

8.REFERENCES
[1] Snort. http://www.snort.org/, 2003.

[2] John W. Lockwood, Nick McKeown, Greg Watson, Glen
Gibb, Paul Hartke, Jad Naous, Ramanan Raghuraman, and
Jianying Luo. NetFPGA - An Open Platform for Gigabit-rate
Network Switching and Routing. IEEE International
Conference on Microelectronic Systems Education

(MSE2007), June 3-4, 2007

[3] R.S.Boyer andJ. S. Moore. A fast string searching
algorithm. Communications of the ACM, 20(10):762-772,
1977.

[4] A. V. Aho and M. J. Corasick. Efficient string matching: an
aid to bibliographic search. Communications of the ACM,
18(6):333-340, 1975.

[5] S. Wu and U. Manber. Fast text searching: Allowing errors.
Communications of the ACM, 35(10):83-91, 1992.

[6] S.Dharmapurikar and J. Lockwood. Fast and scalable pattern
matching for network intrusion detection systems. IEEE
Journal on Selected Areas in Communications, 24(10):1781-
1792, October 2006.

[7] L. Tan and T. Sherwood. Architectures for Bit-Split String
Scanning in Intrusion Detection. IEEE Micro: Micro’s Top
Picks from Computer Architecture Conferences, January-
February 2006.

[8] Sarang Dharmapurikar, John Lockwood. Fast and Scalable
Pattern Matching for Content Filtering. Proceedings of

Symposium on Architectures for Networking and
Communication Systems (ANCS) , Oct 2005.

[9] Sarang Dharmapurikar, and John Lockwood. Fast and
Scalable Pattern Matching for Network Intrusion Detection
Systems. IEEE Journal on Selected Areas in
Communications : Oct 2006, Volume : 24, Issue : 10, pp.
1782 - 1792.

[10] Michael Attig and John W. Lockwood. SIFT : Snort
Intrusion Filter for TCP. 13th Annual Proceedings of Hot
Interconnects, Stanford, CA, August 17-19, 2005.

http://www.arl.wustl.edu/projects/fpx/references/SIFT_Lockwood_Attig-Hot_Interconnects_2005.pdf
http://www.arl.wustl.edu/projects/fpx/references/SIFT_Lockwood_Attig-Hot_Interconnects_2005.pdf
http://www.arl.wustl.edu/projects/fpx/references/SIFT_Lockwood_Attig-Hot_Interconnects_2005.pdf

	1.INTRODUCTION
	2.RELATED WORK
	3.THE DESIGN
	Our approach :
	SNORT signatures :
	Design Specifications :

	4.SYSTEM ARCHITECTURE
	The reference router
	Modification in the data flow
	Content matching module
	Flow of data within the interfaces
	Packet Decoder and signature subset activator
	Frame information table
	Set of Signatures

	5.VERIFICATION AND RESULTS
	Verification Environment
	6. CONCLUSION
	7.ACKNOWLEDGMENTS

	8.REFERENCES

