
A Network Emulator on the NetFPGA Platform

Seok Hong Min, Jae Yong Lee, Byung Chul Kim
Dept. of Infocomm Eng., Chungnam National University, Daejeon, 305-764, Korea

{minsh, jyl, byckim}@cnu.ac.kr

Abstract—Network emulators play an important role when
researchers want to evaluate the performance of newly designed
protocols or network mechanisms instead of deploying them in
real networks, because network emulators can provide
appropriate network situations, (for example, delay, bottleneck
bandwidth and packet loss) needed for experiments through easy
control ‘knobs’. In this paper, we have implemented a network
emulator on the NetFPGA platform that support exact emulation
functions by hardware-accelerated packet processing. We show
the pipeline architecture of the NetFPGA emulator and explain
its component function. Through various performance
experiments, we show that the NetFPGA network emulator has
more accurate emulation performance compared to software-
based network emulators such as the Dummynet [1] and the
NISTnet [2].

Keywords- Network Emulator, NetFPGA Platform, emulation
performance

I. INTRODUCTION
When network researchers want to evaluate the

performance of newly designed protocols or network
mechanisms, they need to deploy them in real large-scale
networks and do experiments they want to perform. However,
it is usually very difficult to adjust network environments for
experiments as they want, because it is hard to manage the real
network characteristics appropriate for their experiments. In
this case, network emulators can do appropriate functions by
emulating a real network situations. The network emulators can
control the bottleneck bandwidth, passing delay, and packet
loss probability in order to emulate real network conditions.

The Dummynet [1] and the NISTnet [2] are widely used
network emulators that can be installed and operated in
ordinary PCs. However, the main drawback of these emulators
is their performance limitations caused by software processing
of control actions in rather low-performance PC platforms.
Software packages running on PCs cannot guarantee exact
packet transmission timing and cannot provide full line rate
performance. They reveal marginal performance with almost
100% CPU utilization for two NICs with line rate 1 Gbps.
Furthermore, the bottleneck of PCI bus performance on PC is
another main reason for performance degradation of network
emulators.

In this paper, we have implemented a network emulator on
the NetFPGA platform that support exact emulation functions
by hardware-accelerated packet processing. We utilized the
NetFPGA reference pipeline [3] and the packet generator
pipeline [4] in order to organize the architecture of the

implemented network emulator. Various experiments show that
the NetFPGA network emulator has more accurate emulation
performance compared to software-based network emulators
such as the Dummynet [1] and the NISTnet [2]. One can utilize
our network emulator in experiments such as high-speed TCP
protocols in Internet and satellite link that has large delay.

The paper is organized as follows. After Introduction, we
explain related works in section II. We present the overall
architecture of network emulator and detailed design of each
component in section III. In section IV, performance
comparison with software-based emulator and various
experiments are shown. We conclude the paper in section V.

II. RELATED WORK

A. NetFPGA Platform
The NetFPGA platform is a network hardware accelerator

that can handle packet processing at line rate without CPU
participation. The PC plug-in card provides four ports of
Gigabit Ethernet and includes local Static RAM (SRAM) and
Dynamic RAM (DRAM) for local processing. The NetFPGA
directly handles all data-path switching, routing, and
processing of Ethernet and Internet packets. All the other
control-path functions are handled by software.

The gateware of the NetFPGA is designed in a modular
fashion to allow users to modify or reconfigure modules to
implement other useful devices. Basically, a network emulator
needs to have at least three traffic control functions, i.e., the
control of bottleneck bandwidth, the control of passing delay,
and the control of packet loss probability. We can implement
an efficient network emulator by using the design of the
reference pipeline of the NetFPGA as shown in Figure 1 [3],
which is comprised of eight receive queues, eight transmit
queues, and user data path which includes input arbiter, output
port lookup and output queues.

Figure 1. NetFPGA Reference Pipeline [3]

B. Network Emulator
Network emulation is a technique where the properties of

an existing, planned network are emulated in order to assess
performance, predict the impact of change without large-scale
network deployment. Network emulation differs from
simulation in that a network emulator appears to be a network;
end-systems such as computers can be attached to the emulator
and will behave as if they are attached to a network. Network
simulators are typically programs which run on a single
computer, take an abstract description of the network traffic
and yield performance statistics. The network emulator
incorporate a variety of network attributes into its emulation
model including the round-trip time across the network
(latency), the amount of available bandwidth, a given degree of
packet loss, duplication of packets, reordering packets, and/or
the severity of network jitter. A high performance network
emulator plays a very important role for various network
experiments of network researchers.

Network emulation can be accomplished by introducing a
device on the LAN that alters packet flow characteristics in a
way that imitates the behavior of application traffic in the
environment being emulated. This device may be either a
general-purpose computer running software to perform the
network emulation such as the Dummynet [1] and the NISTnet
[2], or a dedicated emulation device. In this paper, we
implement a high performance network emulation device by
using the NetFPGA platform on a PC.

III. NETWORK EMULATOR ARCHITECTURE
In this section, we explain the overall pipeline architecture

of the implemented NetFPGA emulator and its functions. In
Figure 2, we represent the overall pipeline architecture of our
network emulator. We utilized the NetFPGA reference pipeline
[3] and the packet generator pipeline [4] in order to organize
the architecture of the emulator. There are 3 main emulation
function modules in our emulator, i.e. , probability random
packet drop module, delay module, and bandwidth limiter
module. We explain the detailed structure of the emulator
components as follows.

User Data Path

Input A
rbiter

O
utput Port Lookup

O
utput Q

ueues

MAC
RxQ

CPU
RxQ

System Time
Generator

GigE
Rx #0

MAC
RxQ

PCI HOST
(DMA) Register I/O

CPU
RxQ

MAC
RxQ

CPU
RxQ

MAC
RxQ

CPU
RxQ

GigE
Rx #1

GigE
Rx #2

GigE
Rx #3

Bandwidth
Limiter

Time Stamp

PCI HOST
(DMA)

MAC
TxQ

CPU
TxQ

Probability Random
Packet Drop

GigE
Tx #0

Delay
Queue

SRAM DDR2
SDRAM

Bandwidth
Limiter

MAC
TxQ

CPU
TxQ

GigE
Tx #1

Delay
Queue

Bandwidth
Limiter

MAC
TxQ

CPU
TxQ

GigE
Tx #2

Delay
Queue

Bandwidth
Limiter

MAC
TxQ

CPU
TxQ

GigE
Tx #3

Delay
Queue

Figure 2. Overall architecture of NetFPGA network emulator

A. Input Arbiter/Output Port Lookup/Output queues
The input arbiter module decides the next Rx queue to be

serviced, pulls and passes its packet to the next module in the
pipeline. The output port lookup module decides the
destination output port of the packet. After that decision is
made, the packet is then handed down to an output queue
module which stores the packet in its buffer corresponding to
the output port until the Tx queue is ready to accept the packet
for transmission. The role of these three modules is the same as
the reference pipeline of the NetFPGA. The next modules after
the output queues perform the various network emulation
functions.

B. Bandwidth limiter module
Each of the four reference output queues to the Ethernet

ports has the bandwidth limiter module in order to emulate the
bottleneck bandwidth of each output Ethernet port individually.
We utilize a token bucket model to control the output
bandwidth exactly from 0 to 1 Gbps. Figure 3 show the token
bucket model that generates tokens according to the bandwidth
limit value and transmits arriving packets utilizing the same
amount of tokens as the packet length. If there is no token,
packet transmission is blocked until the required amount of
tokens are generated.

packets remove
token

queue

network

tokens/sec

packets

Figure 3. Token bucket model for bandwidth limiter

C. Delay queue/ Packet delay module
In order to give some latency to each packet before it is

transmitted to the Ethernet output, we put delay queues and
packet delay modules to each output queue. We can control the
packet latency from 0 ns to 232 ns by attaching ‘timestamp’ of
system clock unit to each packet. Actually, the delay value of
each packet is rather limited to somewhat small value, because
there is basically built-in memory limitation in the NetFPGA
platform. Thus, when the packet input rate is assumed to be 1
Gbps, the maximum delay we can assign to each packet is
limited to about 500 msec. However, when the average
bandwidth of a flow is rather limited upto one hundred Mbps,
we can control the packet latency almost as we want. Further
study is necessary for longer latency emulation using the
NetFPGA platform.

D. Random packet drop module
One of main network emulation function is the control of

packet loss probability occurred in the usual networks. We can
control the packet loss probability in our emulator from
0.001% to 100%. We used a 21-bit LFSR (Linear Feedback

Shift Register) having polynomial as shown in (1) to
implement a pseudo random number generator having the
characteristics of uniform random variables.

21 20() 1P x x x x= + + + (1)

For example, when we set the packet loss probability to p,
we generate a random number from the pseudo random number
generator that generates a number from 0 to 1 for each packet.
If the generated number is less than p, the packet is dropped,
otherwise, it is normally transmitted. We can change the
random drop property to arbitrary burst drop property by
changing the random variable characteristics.

E. Control registers
We can control each of the emulation hardware modules by

setting up parameter values in controlling registers via software.
The main input registers in our network emulator are the delay
register, the bottleneck bandwidth register, and the loss
probability register.

IV. EXPERIMENTATION

In this section, we compare the emulation performance of
our NetFPGA network emulator with the software emulator
‘Dummynet’ [1]. We select for comparison the three
performance measure, bottleneck bandwidth, passing delay,
and loss probability. Overall, we can see that the performance
of the NetFPGA emulator is more accurate and stable. The
performance of the Dummynet has much more fluctuation and
unstable characteristics. We can get the hardware acceleration
benefit of the NetFPGA in the network emulator
implementation.

A. Emulation of bottleneck bandwidth
Figure 4 shows that the bottleneck bandwidth performance

of the two emulators. As the configuration value of bottleneck
bandwidth increases up to 1 Gbps, the NetFPGA emulator can
emit exact throughput almost up to 1 Gbps, but the output of
the Dummynet is saturated around 700 or 800 Mbps. In the
Dummynet case, the software processing can not follow the
input rate 1 Gbps.

Figure 4. Bottlencek Bandwidth emulation of the two network emulators

B. Emulation of packet delay
In Figure 5, we measure the delay emulation performance of
the two emulators. We use 1000 ping packets to measure the
delay emulation using 10 msec delay configuration. The Figure
shows that the delay value of the NetFPGA emulator is very
accurate according to the configured value, but the delay
performance of the Dummynet has more diverse variation

Figure 5. Delay emulation of the two network emulators

C. Emulation of packet loss
In Table 1, we show the emulation performance of packet

loss probability of the two emulators. The NetFPGA emulator
can control exact loss probability following the configured
values. The Table shows exact mean value and very small
variance of loss probability. But, the loss probability of the
Dummynet does not follow the configured values and shows
large variance in loss probability.

TABLE I. PACKET LOSS PROBABILITY EMULATION OF THE TWO
NETWORK EMULATORS

Loss Probability
Configuration 0.1% 1% 5% 10%

NetFPGA
Result

mean 0.100062 1.00111 5.004734 10.11184

variance 4.26e-11 2.39e-10 7.63e-10 2.22e-09

Dummynet
Result

mean 0.099667 0.997294 4.939374 9.754387

variance 9.72e-11 2.96e-10 2.21e-09 6.93e-09

D. Application to TCP throughput performance
As an application of our NetFPGA network emulator, we

measure the throughput performance of TCP/Reno according
to varying round trip time (RTT) and packet loss probability.
The experiment topology is shown in Figure 6. We use two
Linux PCs for the TCP sender and the receiver host and ‘iperf’

[5] software is used for TCP packet generation. To emulate
various network environments, we adopt our NetFPGA
network emulator. We have measured the TCP/Reno
throughputs and compared them with that of the simple
TCP/Reno throughput equation [6] obtained by using the
simple periodic protocol operation model as the following,

1 3(/)
2

Throughput TCP Reno
RTT p

= (2)

Figure 6. Experiment topology for TCP/Reno performance measurement

In Figure 7, we represent the TCP/Reno throughput
measurement results for varying packet loss probability
emulation, and compare it with the result of the equation (2).
Originally, the equation (2) was obtained using very simple
approximation of periodic model and shows accurate result
only for the small loss probability. So, the two results show
some deviation from each other for large loss probabilities.

Figure 7. TCP throughput vs. packet loss probability

In Figure 8, we controlled the delay value of the emulator
and measured the TCP throughput and compared it with that of
the equation (2). In this experiment, we set the configuration
delay of the emulator to RTT for convenience, although the
actual RTT is different from that of the delay emulation value.
The measurement value has very similar tendency with the
theoretical result.

Figure 8. TCP throughput vs. RTT

V. CONCLUSION
In this paper, we have implemented a network emulator on

the NetFPGA platform. We have shown its exact emulation
performance compared to the software emulator Dummynet.
We also show that the TCP throughput performance by using
our network emulator.

The NetFPGA network emulator can be utilized for various
network experiments such as performance of high-speed TCP
protocol variants, emulation of long delay satellite link and etc.
There is a limitation in delay emulation due to small memory
size for packet storage. Extension of delay range and addition
of delay jitter emulation function are for further study.

ACKNOWLEDGMENT
This paper is one of results from the project (2009-F-050-

01), “Development of the core technology and virtualized
programmable platform for Future Internet” that is sponsored
by MKE and KCC. I’d like to express my gratitude for the
concerns to support for the research and development of the
project.

REFERENCES

[1] Dummynet, http://www.dummynet.com/
[2] NISTnet, http://www-x.antd.nist.gov/nistnet/
[3] NetFPGA,http://netfpga.org/foswiki/bin/view/NetFPGA/OneGig/Guide#

Walkthrough_the_Reference_Designs
[4] G. Adam Covington, Glen Gibb, John Lockwood, and Nick McKeown,

“A Packet Generator on the NetFPGA Platform”, IEEE Symposium on.
Field-Programmable Custom Computing Machines (FCCM), April 2009.

[5] iperf, http://sourceforge.net/projects/iperf/
[6] Matthew Mathis, Jeffery Semke, Jamshid Mahdavi, Teunis Ott, “The

Macroscopic Behavior of the TCP Congestion Avoidance Algorithm”,
ACM SIGCOMM, vol 27, no 3, July 1997.

