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ABSTRACT
The Cyber DEfense Technology Experimental Research (DE-
TER) testbed is a networking testbed that allows researchers
to perform security focused simulation and experiments in
a controlled environment. In this paper, we describe the in-
tegration and the use of a hardware/software co-design host
with the NetFPGA card, an open source field programmable
gate array (FPGA) based network interface. Through our
case study, we also demonstrate how schematic based mod-
ule design can simplify development of NetFPGA modules.
The case study module is a simplified network intrusion de-
tection system which uses deep packet inspection. We de-
ploy and exercise our system using the DETER testbed.

1. INTRODUCTION
Internet worms and viruses account for billions of dollars in
economic damage every year. Various network attacks in-
fect and spread through custom designed packet payloads
and network traffics. One effective way of detecting and
preventing network attacks is by the way of deep packet in-
spection. Deep packet inspection not only examines headers
but also the payloads of packets.[23] Therefore, a security
system that incorporates a deep packet filter offers better
protection from attacks than traditional firewalls.

However, scanning the payload of every packet at every byte
requires high computation requirement; especially if there
are multiple patterns that needs to be matched. Using soft-
ware based approaches, detecting a reasonable set of string
patterns in network packet over 1Gbps is a difficult task
even on the latest general purpose multiprocessors.[26] For
the past several years, a number of researchers have inves-
tigated novel ways to implement and accelerate the pattern
matching tasks on field programmable gate arrays (FPGA).
Many designs match tens of thousands of patterns at per-
formances well beyond the practical limits of software based
systems.

The NetFPGA network interface card is a platform that
can be used to develop and test FPGA based algorithms for
deep packet inspection. However, directly writing Verilog or
VHDL code may not be the easiest design paradigm, espe-
cially for novice hardware designers. In this paper we de-
scribe a simple module for deep packet inspection designed
completely using a graphical, schematic design paradigm.
We show how this code can be successfully integrated with
the reference code (written in Verilog) provided by the NetF-
PGA project.

Researchers not only need an easy-to-use hardware proto-
typing environment, but they also require a testbed in which
to perform realistic experiments that will rigorously test a
hardware design. The DETER testbed is designed for net-
work security focused experimentation and simulation. De-
ploying NetFPGA in DETER is a natural fit and provides
a hardware/software researcher with an environment where
experiments with various desirable conditions (i.e. high-
bandwith, high-packet rates or packets with dangerous or
malicious content) can be created and carried out in a con-
trolled environment.

Combining these technologies we have developed a high-
speed pattern matching module for the NetFPGA using
schematic design. We deployed and tested the design in
DETER to both validate our hardware design, but to also
prove the suitability of DETER for such experiments. This
paper presents a basic hardware accelerated network intru-
sion/prevention detection system (NIDS/NIPS) for NetF-
PGA platform. In section 3, the paper shows how a par-
allel pattern matching engine and specialized first-in first-
out (FIFO) module are integrated to the reference gigabit
router. The implementation and experimental details are
discussed in section 4. Then in section 2, the some of the
relevant prior works are briefly discussed to suggest other
potential extensions to the presented system. The paper
concludes in section 5 with a few final thoughts on the future
of network security systems on reconfigurable platforms.

2. RELATED WORKS
2.1 NetFPGA
To date, FPGA based network processors have often been
custom hardware designed for the task at hand, thus limiting
other researchers ability to duplicate and enhance designs.
The NetFPGA [22] platform contains many of the necessary
components to build FPGA based network processors on an
open source, commercially available PC board.
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Figure 1: Mini-NIDS/NIPS system within the ref-
erence router design

NetFPGA allows researchers and students to build and test
network systems using two widely available technologies:
Gigabit Ethernet and Xilinx FPGAs. The NetFPGA ex-
pansion card consists of Four Gigabit Ethernet ports, Xil-
inx FPGA, Static RAM (SRAM), Double-Data Rate RAM
(DRAM) and PCI host interface. The board can be installed
a computer to make the system act as any type of router,
Firewall, IDS/IPS or a Measurement device. The NetFPGA
developers provide a set of base packages and reference code
that can be used to configure the NetFPGA as a 4-port net-
work interface card, or 4-port router. The reference code
handles packet I/O to the host CPU and Ethernet inter-
faces and since it is modular can be used as a starting point
for module design.

The modular design combined with Gigabit Ethernet inter-
faces provide an easy to use environment for designing and
testing high-speed, hardware based network processing sys-
tems or algorithms. Other researchers have built systems on
the NetFPGA. These systems have implemented technolo-
gies such as layer 2 virtualization, routing protocols, switch-
ing, URL extraction, packet generation and general purpose
programable packet processing. See [1, 20, 27, 21, 6, 24, 8,
16, 13, 25, 30] for work of this type. This body of NetFPGA
work shows the flexibility and power of the platform.

2.2 DETER
In last couple of decades, computers have penetrated in our
lives substantially. Today, many sectors, such as Finance,
Medical, Education, Defense, Entertainment, etc rely upon
computers to perform majority of their tasks. While this
has made our lives easier, it has also exposed us to certain
risks such as Cyber attacks. In their nascent stage, cyber
attacks were not able to do much harm, but now attacks
have become lot more organized and sophisticated which
leaves us even more vulnerable to such threats and mali-
cious activities. We need to guard ourselves along with our
infrastructure from these attacks.

patt(55:48)

input(55:48)

mask(6)

byte_match(6)

byte_match(6)
mask(6)

patt(55:48)
input(55:48)

mask(0)

patt(7:0)
input(7:0) byte_match(0)

patt_match

Byte Comparator with Mask bit

Figure 2: Parallel pattern matching engine

Research has been done to simulate/emulate such attacks
and study their behavior [12, 17]. Many companies and re-
search organizations built testbeds to study certain kinds of
attack, but these testbeds suffered two serious drawbacks: 1.
Collaboration was impossible outside the research group; 2.
Testbeds were attack specific and non-adaptable. There was
a need for a general purpose testbed which is not only flexi-
ble but also allows collaboration among security researchers
from different organizations and nationalities.

The Cyber Defense Technology Experimental Research net-
work (DETER) testbed [2] is a combination of physical net-
work infrastructure, experimental methodologies and man-
agement tools. The testbed is fully isolated from the In-
ternet and all the experiments execute in a controlled en-
vironment. Experiments are encouraged to generate mali-
cious traffic and may cause damage to host computers or
other network infrastructure. The DETER management
tools are able to clean and reset the computers, switches and
routers back to a known good state. The utility of DETER
will depend on the power, convenience, and flexibility of its
software for setting up and managing experiments includ-
ing registration, definition, generation control, monitoring,
check-pointing, and archiving. An important aspect of the
management software is the requirement for sophisticated
network monitoring and traffic analysis tools for both exper-
imenters and DETER network operators. Experimental re-
sults obtained using the DETER testbed enables researchers
to develop fast, efficicent and innovative technologies which
could be used widely providing cyber protection.

DETER is hosted at USC/ISI and University of California,
Berkley. It is based on the Emulab [14] project at University
of Utah. Using DETER, researchers set up experiments con-
taining PCs, switches, and routers which can be configured
into arbitrary topologies. Experiments are then carried out
in a controlled manner. As a shared resource, experiments
can be larger and more sophisticated than what a researcher
may be able to afford if he were required to acquire and con-
figure the necessary equipment himself.
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Figure 3: The screen capture of Xilinx ISE Schematic Layout Tool of the drop enabled FIFO module

2.3 FPGA Based Intrusion Detection
There are a number of fast pattern search algorithms imple-
mented in FPGA to meet the performance requirements of
high-bandwidth NIDS/NIPS. Sidhu and Prasanna mapped
Non-deterministic Finite Automata (NFA) for regular ex-
pression into FPGA to perform fast pattern matching [28].
Using this method, Franklin et. al compiled patterns for
an open-source NIDS system into JHDL [10]. Work from
Washington University in St. Louis shows that NFA trans-
lated into deterministic finite automata (DFA), in practice,
optimizes to compact and fast hardware for the purpose of
NIDS[18]. Due to the parallel nature of the hardware, these
designs maintained high performance regardless of the size
of the patterns.

The Granidt project of Los Alamos National Laboratory im-
plemented a fast re-programmable deep packet filter using
content addressable memories (CAM) and the Snort rule
set [11]. UCLA’s implementation of the same application
uses discrete logic to build fast pattern match engines. The
match engine is a parallel pipelined series of reconfigurable
lookup tables (LUT) that can sustain a bandwidth of 2.8
Gbps [5][4][19]. Sourdis mapped a similar design with a
deeper pipeline to increase the filtering rate [29] while Clark
made some area improvements [7].

Hash function based systems have also been implemented
on FPGA based system. One notable system uses Bloom
filters [3] to detect the entire set of Snort signatures at line
rate.[9, 15].

Based on some of the earlier exact pattern matching design,
we implement and integrate a on-line programmable pat-
tern matching module to NetFPGA reference router. We
describe this work in more detail in the following section.

3. INTRUSION DETECTION/PREVENTION
SYSTEM

3.1 Extended the Reference Router Design
To develop a module for the NetFPGA a designer has two
options. One may write the module in a high-level hard-
ware language such as Verilog, or one may use a graphi-
cal schematic capture tool. We posit that for many NetF-
PGA implementations the schematic design option is ad-
vantageous. For example, if the NetFPGA is being used by
students in a graduate computer science or electrical engi-
neering course, the students may have various amounts of
prior hardware experience. However, they will all have seen
block-level hardware or computer architecture designs. By
using hardware modules (memory, registers, flip-flops, etc.)
provided by the standard library for Xilinx FPGAs, design-
ers can design and simulate complex hardware designs with-
out learning a new programming language.

In order to implement the NIDS idea described above we
extended the reference router design of the NetFPGA. The
reference router design configures the NetFPGA as a 4-port
router. The interface addresses and routing information are
configured at runtime from the host. Packets are then ex-
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Figure 4: Block diagram of mini-NIDS/DPI system

amined and routed solely inside the FPGA hardware. This
allows for full-speed, full-duplex routing on each port, total-
ing 8GBps of throughput.

The reference router has a set of I/O queues for each port.
Received packets are placed in the input queues and then ex-
amined. If the forwarding information for a packet is avail-
able in the routing table, the packet is placed in the proper
output queue. Between the output of the routing engine and
the output queues it is easy to insert a module that sees all
packets passing through the router. It is here that we insert
our NIDS module. The module is based on a fixed length
FIFO, thus it has no effect on the routing throughput of the
router, while enabling the NIDS functionality.

Using the Xiling ISE integrated design environment we first
created a project that imported the Verilog source code
for the reference router. We then have access to the data
and signaling lines using the labels contained in the Verilog
source. We used block-level modules available from the Xil-
inx component library such as dual-ported SRAM, counters,
comparators, and registers to construct the pattern match-
ing logic and drop enabled FIFO. Before compiling the de-
sign to a bitfile we used the simulation environment to debug
the design.

3.2 Drop Enabled FIFO
The drop enable FIFO is used to store packets as they are
scanned. The internal bus of the reference router is 8 bytes
wide, so to ease integration with the reference router the
drop-enabled FIFO is also 8 bytes wide. It is constructed of
dual-ported SRAM and is approximately 3KB total in size
(enough to hold two standard size Ethernet packets).

Bytes from a packet are written into the FIFO with an
address counter and simultaneously scanned by the string
matching engine. If a packet does not contain a string
match, a second counter is used to write it out to the next
module (usually the output arbiter).

If a packet contains a matching string, the packet is dropped
by simply resetting the address counter and writing over the
packet with the next arriving packet.

Figure 5: Screen shot of the NetFPGA integrated
with DETER

3.3 String Pattern Matching Engine
The String Pattern Matching Engine is the core of the NIDS
module. Figure 2 shows the design of the component. Bytes
in the FIFO are compared against the 7-byte string for a
match. The matching logic is repeated in such a way that
as each 8 byte section of the packet arrives into the FIFO, all
possible byte alignments are scanned. If a match is detected,
the packet is dropped as described above.

3.4 Software Interface
In addition to the FPGA hardware design of the NIDS, we
provide a simple software interface. This software interface
allows the user to configure the string pattern against which
the hardware matches. The software interface also allows to
read and reset the counter incremented by the matching en-
gine. Finally, a command interface is implemented so other
run-time aspects of the hardware design may be modified
(i.e. changing from count-only to drop modes).

4. IMPLEMENTATION AND RESULT

4.1 Integration with DETER
DETERLab gives us the flexibility (for creating different test
environments) and isolation (so that we can run malicious
code and observe their behavior without running into risk of
releasing it to other parts of the Internet). NetFPGA gives
us the flexibility (of changing the hardware design through
FPGA re-programming) and hardware speed. Its a perfect
blend if we combine these two technologies which can help
us in coming up with faster security solutions.



(a) Bandwidth with NetFPGA + reference router

Node A Node B Node C Node D Total Out B/W

Node A - 262 287 285 834
Node B 281 - 258 286 825
Node C 292 263 - 259 814
Node D 257 297 284 - 838

Total IN B/W 830 822 829 830

(b) Bandwidth with NetFPGA + (reference router & NIDS)

Node A Node B Node C Node D Total Out B/W

Node A - 301 286 273 860
Node B 273 - 273 268 814
Node C 237 280 - 298 815
Node D 289 258 285 - 832

Total IN B/W 799 839 844 839

(c) Bandwidth with NetFPGA + (reference router & NIDS dropping packets)

Node A Node B Node C Node D Total Out B/W

Node A - 0 414 437 851
Node B 432 - 0 401 833
Node C 385 433 - 0 818
Node D 0 397 414 - 811

Total IN B/W 817 830 828 838

Table 1: Experimental results of NetFPGA based NIDS deployed on DETER

We used a DELL 150 server and academic version of the
NetFPGA card. The integration process involved two steps:
1) We installed the NetFPGA card on the machine, installed
all the drivers and base packages required by the NetFPGA
card for normal working. Then we tested it thoroughly. 2)
Finally, we put the machines into the DETERLab and inte-
grated it into the bigger system. Then using Deter tools, we
were able to load CentOS 5.4 on it and install all the base
packages and required drivers. The last step was to take a
custom image, so that future users can directly load the cus-
tom image to the NetFPGA node and start experimenting.

4.2 Using NetFPGA in DETER
For users familiar with DETER (or Emulab) this section
outlines how to use the NetFPGA in DETERlab. The DE-
TERlab testbed uses the Emulab cluster testbed software
developed by the University of Utah. This software controls
a pool of experimental nodes that can be assigned, inter-
connected with high-speed links by any type of topologies,
loaded, and monitored remotely, to meet the requirements
of each experiment. Researchers or experimenters use the
DETERLab web interface to create, swap-in, swap-out, and
monitor their experiments remotely.

One of the important functionality Deter provides is its abil-
ity to provide interface to design and implement different
types of topologies. This is achieved by using configuration
which describes the network topologies. Just as Emulab,
DeterLab uses the “NS” (Network Simulator) format to de-
scribe network topologies.

We have integrated the NetFPGA into DETERLab in a
manner that is compatible with the NS file format. To
include the NetFPGA in their experiment requires only 5
additional lines. Users must declare the OS-type for one
node to be CentOS5-netfpga-base. The DETERLab sys-
tem administrators have marked only nodes containing a

NetFPGA card as capable of running this OS image, result-
ing in a NetFPGA node being assigned to your experiment.
Secondly, users must declare 4 nodes of type netfpga2. The
individual interfaces on the NetFPGA are seen as virtual
nodes in DETER, so one must declare them in this manner
in order to map them into the experimental network. Please
see listing 1 for an example NetFPGA NS file.

Users must have their own workstation properly licensed
with the Xilinx tool-chain in order to generate bitfiles for the
NetFPGA. Once a NetFPGA experiment is running, users
upload their bitfile to the DETER node running CentOS5-

netfpga-base. From there the bitfile is loaded to the Net-
FGPA and experimentation can begin. If the NetFPGA is
configured with the reference NIC or reference router code,
the NetFPGA host machine will have 4 Ethernet ports avail-
able to the Linux OS representing the 4 Host CPU queues
implemented by the output arbiter.

4.3 Performance
The reference router NetFPGA design is such that it allows
wire-speed packet routing on full-duplex 1Gbps ports. As
described above, our NIDS is also designed to be inserted
into the reference router pipeline. Since packets are exam-
ined in the FIFO as they pass through our NIDS, our ad-
dition to the reference router should have no impact on the
wire-speed routing capabilities of the NetFPGA. We have
designed an experiment to test this assumption and to show
that our NIDS performs as designed.

Using DETER we configured a network with the topology
shown in figure 5 (also listing 1. Each host was connected
through a gigabit switch to a port on the NetFPGA board.
First we ran a simple experiment to show that we do not
place any additional constraints on the routing performance.
Here we load the reference router bit file as supplied by the
NetFPGA project. We run a TCP Iperf server on each of the



4 non-NetFPGA nodes. Then we run 3 TCP Iperf clients on
each of the nodes. Each client connects to one of the other
3 nodes. The clients attempt to send data at maximum
bandwidth. Therefore the bi-directional bandwidth seen at
each NetFPGA port should approach 2Gbps. Table 1(a)
shows the matrix of throughput values obtained.

Secondly we perform the same experiment, however this
time we load a bit file that includes our NIDS module. The
NIDS module is not configured to drop traffic. As can be
seen in table 1(b) the throughput obtained by the individual
nodes and the system as a whole is unchanged.

Third we verify that the NIDS properly blocks traffic that
contains the selected pattern (we call this BAD traffic). One
TCP Iperf client on each node is configured to send packets
that contain data that matches the selected pattern. The
other Iperf clients operate as before. In table 1(c) we see
that not only do the BAD TCP connections fail to achieve
any throughput, the other TCP connections are able to ex-
ploit the extra bandwidth. The overall system throughput
remains the same. Finally we ran an experiment where all
Iperf clients were configured to send BAD traffic. As ex-
pected, the system experienced zero throughput.

5. CONCLUSION AND FUTURE WORK
Many researchers are interested in how reconfigurable hard-
ware might be used to develop novel network processing
hardware/software systems, particularly as related to cy-
ber security. The NetFPGA network interface card pro-
vides an easy to use platform for designing FPGA based
network hardware, while the DETER testbed provides a
flexible arena to perform repeatable, medium-scale network
security experiments. In this paper we show how schematic
design can speed the NetFPGA hardware design process by
designing deep-packet inspection engine. We then deploy
the design on DETER and experimentally verify the perfor-
mance.

Currently (Spring 2010) the NetFPGA deployed on the DE-
TER testbed was under beta-test by the students in a graduate-
level network systems course at the University of Southern
California. We plan to make the NetFPGA available to
all DETER researchers over Summer 2010. We will release
detailed instructions on how to allocate, configure, and ex-
periment with NetFPGA on DETER. In the future we will
investigate extensions to the DETER interface (web and
command-line) that will allow seamless integration, such as
automatic generation and upload of a bitfile from Verilog
source.

The authors would like to thank John Hickey and Ted Faber
of the DETER project for their invaluable help in deploying
the NetFPGA node on DETER.
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Listing 1: Example DETERLab NS file utilizing a NetFPGA node
# This i s a simple ns s c r i p t . Comments s t a r t wi th #.
# Below 2 l i n e s are the pro logue as mentioned above
# This s c r i p t w i l l s e tup 5 nodes in a s t a r t opo l og y :
# 4 re gu l a r Linux nodes and one node to hos t the NetFPGA

set ns [ new Simulator ]
source tb compat . tc l

#Then de f i n e the 5 nodes in the t opo l og y .

set con t r o l [ $ns node ]
set nf1 [ $ns node ]
set nf2 [ $ns node ]
set nf3 [ $ns node ]
set nf4 [ $ns node ]

set nodeA [ $ns node ]
set nodeB [ $ns node ]
set nodeC [ $ns node ]
set nodeD [ $ns node ]

#The f o l l ow i n g l i n e s import the 4 por t s on the NetFPGA
tb−set−hardware $nf1 netfpga2
tb−set−hardware $nf2 netfpga2
tb−set−hardware $nf3 netfpga2
tb−set−hardware $nf4 netfpga2

#The f o l l ow i n g l i n e ensures the NetFPGA hos t i s used
tb−set−node−os $ con t r o l CentOS5−netfpga−base

tb−set−node−os $nodeA CentOS5
tb−set−node−os $nodeB CentOS5
tb−set−node−os $nodeC CentOS5
tb−set−node−os $nodeD CentOS5

set l i nk0 [ $ns duplex− l ink $nodeA $nf1 1000Mb 0ms DropTail ]
set l i nk1 [ $ns duplex− l ink $nodeB $nf2 1000Mb 0ms DropTail ]
set l i nk2 [ $ns duplex− l ink $nodeC $nf3 1000Mb 0ms DropTail ]
set l i nk3 [ $ns duplex− l ink $nodeD $nf4 1000Mb 0ms DropTail ]

$ns r tp r o to S t a t i c

$ns run
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