
Mitigating HTTP GET Flooding Attacks through Modified
NetFPGA Reference Router

Jinghe Jin

Dept. of Information and
Communication Engineering

Yeungnam University,
Republic of Korea

jinjinghe@ynu.ac.kr

Nazarov Nodir

Dept. of Information and
Communication Engineering

Yeungnam University,
Republic of Korea

nazarov.nodir@gmail.c
om

Chaetae Im

IT Infrastructure Protection
Division, KISA,

Republic of Korea

chtim@kisa.or.kr

Seung Yeob Nam

Dept. of Information and
Communication Engineering

Yeungnam University,
Republic of Korea

synam@ynu.ac.kr

ABSTRACT
Distributed denial of service (DDoS) attacks are a grave threat to
Internet services. These days it is getting more difficult to
discriminate legitimate traffic of normal users from DoS attack
traffic after emergence of application-level DoS attacks, because
the bots performing application-level DoS attacks tend to send
seemingly normal traffic. We propose a hardware-based HTTP
GET flooding detection and defense system, which can protect a
given web server farm by filtering out malicious HTTP requests
based on the difference of the behavior between normal browsers
and bots. The objective of the proposed DDoS defense system is
to provide continued service to legitimate clients even when the
normal or attack HTTP traffic arrives at the rate of up to Gbps.
We implement the system by modifying the Verilog gateware of
the NetFPGA Platform to filter HTTP GET packets, extract and
count the requested Uniform Resource Locators (URLs)
efficiently using hash tables. The blacklist of attackers’ IP
addresses is managed and displayed through the corresponding
application. We evaluate the performance of the proposed defense
system in terms of the throughput and CPU utilization of the
defense system and the victim through experiment on a test bed.

Categories and Subject Descriptors

B.6.1 [Logic Design]: Design Styles—sequential circuits, parallel
circuits; C.2.0 [Computer-Communication Networks]: General—
security and protection; C.2.5 [Computer-Communication
Networks]: Local and Wide-Area Networks—ethernet, highspeed,
internet
General Terms

Measurement, Design, Security.

Keywords
DDoS, DoS, NetFPGA, HTTP GET flooding.

1. INTRODUCTION
A denial of service (DoS) attack is an attempt to make a computer
resource unavailable to normal users. These days the power of a
DoS attack is amplified through botnets [1] launching distributed
denial of service (DDoS) attacks by incorporating over thousands
of “zombies”, i.e. computers taken over through a worm or other
automated methods. Although a lot of defense mechanisms have
been proposed to counter DDoS attacks [2], it still remains as a
difficult problem especially because the attackers tend to mimic
normal traffic. For example, a new type of DDoS attack called
HTTP flooding attack has emerged recently. In case of HTTP
flooding attack, the infected hosts create many threads to send a
large amount of requests to the victim's website to disable it [3].
Since these requests have legitimate contents and are sent via
normal TCP connections, the server usually serves them as normal
requests, and exhausts its resource finally. The attack launched by
the worm Mydoom [4] in 2004 is an example of HTTP flooding.
Recently, there have been intensive DDoS attacks against major
government, organization, news media, and financial company
websites in South Korea and US around July 7, 2009 [5].
According to analysis of Cisco Korea, HTTP GET flooding rate
was not less than 20 packets per second for each zombie machine
[6].

A lot of defense mechanisms have been proposed to counter
DDoS attacks [2], and they can be classified into two categories:
software-based DDoS defense system and hardware-based DDoS
defense system. Software-based DDoS defense systems usually
measure flow information with a large storage space and enough
memory. However, these kinds of DDoS defense systems may not
accommodate gigabit rate traffic especially under the gigabit rate
of HTTP flooding, because of the limitations on the kernel buffer
or CPU overloading. One of the major advantages of hardware-
based DDoS defense systems is that they can process packets at a
higher speed than the software-based ones. Since the inter-arrival
time can be very short at a high link rate, fast memory such as
SRAM is usually required to process those packets arriving at a
high speed. But, the size of high speed memory is usually very
limited. Since the proposed HTTP GET flooding defense system
is implemented on a NetFPGA [7] which also has a very limited

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

This work was supported by the IT R&D program of MKE/KEIT.
[2009-S-038-01, The Development of Anti-DDoS Technology].
1-st Asia NetFPGA Developers Workshop, June 13–14, 2010, Daejeon,
Korea.

memory size of 4.5MB, we attempt to alleviate the load on the
memory by refreshing the memory periodically.

Among the well-known hardware-based DDoS defense systems
there are Cisco Guard XT series [8] and RioRey RX series [9]
systems. Although these two hardware-based DDoS defense
systems can defeat the application-level DDoS attacks such as
HTTP GET flooding, they might yield high false positives
because of the per-source IP counting[10][11], which means that
the number of incoming packets are counted for each IP address.
When a normal user accesses a web page by typing the URL
manually or following an existing link, the corresponding base
html file comes first as a response. Then, the browser on the
user’s machine usually generates subsequent HTTP request
packets to collect other objects, e.g. images, Java applets, or video
clips, referenced in the base html file. Occasionally, even a single
link click can induce up to hundreds of HTTP request packets
destined to different URLs for the embedded objects. But, if all
those requests are destined to the same IP address, that normal
user might be detected as an attacker by the conventional DDoS
defense systems that are based on per-IP counting.

In order to reduce such false positives, we propose a per-URL
counting mechanism based on the difference of the behavior
between legitimate users and bots. As mentioned above, the
browser on the machine of a legitimate user might generate a
rather large number of HTTP request packets even with a small
number of user actions. But, those request packets are usually
spread out over many different URLs because they are generated
to collect different objects of a given web page. On the other hand,
bots, e.g. NetBot [12], BlackEnergy [13], usually send many
HTTP request messages only to a selected target URL frequently.
Since the proposed scheme counts the number of HTTP request
packets for each URL in a given time interval, it can clearly detect
the HTTP GET flooding attack, identify which URL is under
attack, and identify who is the attacker while reducing false
positives. We implement the per-URL counting scheme on the
NetFPGA reference router. NetFPGA is a PCI card that contains a
large Xilinx FPGA, 4 Gigabit Ethernet ports, Static RAM
(SRAM), Double-Date Rate (DDR2) Dynamic RAM (DRAM) [7].

We evaluate the performance of the proposed defense system in
terms of the throughput and CPU utilization of the defense system
and the victim through experiment on a test bed.

2. Proposed DDoS detection and defense
mechanism
In order to investigate the difference of the behavior between
legitimate users and bots, we made a web site which has 10
objects with different URLs and attacked the web site by using the
attack tool called NetBot [12], and compared the behavior of a bot
with that of a normal user. Figure 1 shows the test result.

From Figure 1, we can easily observe that there is a significant
difference between a legitimate user and a bot. Legitimate users
send an HTTP request packet for the main web page, and then, the
browser generates multiple additional request packets for the
referenced objects, usually images. Bots send many HTTP
requests only to the target URL differently from the browser.

We also investigated how high HTTP request rate can be achieved
by a legitimate user through a simple test. Figure 2 shows the test
results.

When the key F5 (web page refresh button) is pressed repeatedly,
the HTTP request rate reaches only up to 3 times per second.
Since the HTTP request rate is usually not less than 20 packets per
second when a zombie machine attacks a web server [6], the
HTTP GET flooding attack by a bot can be detected if we count
the number of accesses to URLs for each source IP address, and
compare it with a pre-determined threshold, e.g. 15.

When we press and hold the key F5, we find that the HTTP
request rate reaches up to 30 times per second. But, this is not the
behavior expected from the normal users, and thus, we will
consider this high HTTP request rate as malicious behavior. We
set the threshold for attacker detection to 15 in our system.

Based on above observation, we propose a hardware-based HTTP
GET flooding defense system and implement it on the NetFPGA
platform. The hardware component is an extended NetFPGA IPv4
reference router that is composed of three parts: HTTP GET filter,
URL Extractor, and a hash table-based URL counter. The HTTP
GET filter parses HTTP GET packets, and URL Extractor extracts
URL information from the HTTP GET packets. For each source
IP, the number of accesses to each URL is managed in a hash
table. If the number of HTTP request packets from a source IP to
a specific URL exceeds a pre-defined threshold, the defense
system drops all the packets from the detected source IP and
notifies the host of the detected IP so that the corresponding
application program can display the blacklist of attackers’ IP
addresses.

Figure 2. Rate of HTTP request packets generated by
human users

Figure 1. Behavior difference between legitimate users
and bots

The proposed per-URL counting mechanism consists of three
stages as shown in Figure 3. In the first stage of proposed defense
mechanism, we count the number of accesses for each URL by
using a hash table to check whether any URL is under attack. In
the second stage, we manage a hash table named Potential
Attacker List (PAL) to find out the real attacker by counting the
number of HTTP request packets from each source IP to the
victim URL which is selected in the first stage. In the third stage,
the IP address of the real attacker detected in the second stage is
registered in the blacklist and any packets from the attacker will
be dropped.

In the first stage, the source IP, destination IP and Uniform
Resource Identifier (URI) information of arriving HTTP request
packets are extracted. In the proposed scheme, the URL is
considered as the combination of the destination IP and URI. We
manage the number of request packets for each URL in a given
interval in the URL connection state management table ௛ܶ as
shown in Figure 3(a). ܥ௥೔ denotes the number of the request
packets for URL i, ܥ௦ denotes the number of IP addresses
connected to the server and ܫ௧ denotes the measurement time
interval. According to the observation result on bot and legitimate
user behavior, we set the threshold ௧ܰ௛

ଵ to detect the victim URL
as ௧ܰ௛

ଵ = α Ⅹ ܫ௧ Ⅹ ܥ௦ (α = 15). If ܥ௥೔ > ௧ܰ௛
ଵ , then we consider

that URL i is under the HTTP GET flooding attack. The number

of currently connected IP addresses can be tracked through a
separate table ௜ܶ of source IP address and timer pair, as shown in
Figure 3(d), by refreshing the timer whenever a new packet from
the corresponding IP address is observed and deleting the source
IP address when the timer expires. The default timer value needs
to be determined considering the average flow life time.

If the victim URL is detected in the first stage, then we will create
PAL ௣ܶ for the victim URL to find the real attacker in the second
stage. As shown in Figure 3(b), PAL counts the number of HTTP
request packets from each source IP to the victim URL in a given
time interval ܫ௧. The threshold ௧ܰ௛

ଶ for the second stage is set as

௧ܰ௛
ଶ = α Ⅹ ܫ௧. Let ௜ܵ denotes the count value of i-th source IP in

the table ௣ܶ . If ௜ܵ > ௧ܰ௛
ଶ , then the corresponding IP address is

detected as an attacker’s IP.

In the third stage, the IP address detected in the second stage is
registered in the blacklist as shown in Figure 3(c) and all the
packets from the registered IP addresses are discarded.

3. Implementation
Our hardware-based HTTP GET flooding defense system is
implemented on the NetFPGA platform. It has two main
components: measurement sub-system and blacklist display
application. The measurement component is implemented on

Figure 3. Detection of HTTP GET flooding attacker based on per-URL counting

NetFPGA IPv4 reference router and it consists three parts: HTTP
GET filter, URL Extractor, and a hash table-based URL counter.
The blacklist display application shows the blacklist of attackers’
IP addresses. Figure 4 shows the system diagram.

We modify the Output Port Lookup module of the reference
router by adding a new sub module called http_ddos_defense as
shown in Figure 5. The output port lookup.v file has been
modified to include the definition of the http_ddos_defense and its
wire connects to the preprocess_control and op_lut_process_sm
sub modules.

The http_ddos_defense is a new preprocess block that identifies
the HTTP GET packets, extracts URL information from those
packets and manages the hash table of the URL counters. The
HTTP protocol uses the GET method to send URL requests to
web servers. The difference between GET request packets and
other http packets is that GET request packets contain the “GET”
string at the beginning of the TCP payload. Michael Ciesla et al.
[14] have already implemented HTTP GET filter to indentify the
HTTP GET packets. In order to identify the HTTP GET packets,
we first inspect four header fields (refer to Figure 6). First, we
check whether the packet is large enough to contain the “GET”
string. Second, we need to make sure the transport layer protocol
is TCP, because HTTP goes on top of TCP. Third, we check
whether the destination port number is 80, a well-known port
number for web server. Forth, the TCP header length is checked
because it can be different depending on the operating systems.
For example, Linux TCP headers include a 12-byte Option field
that Windows does not use. Consequently, this changes the
location of the “GET” string, and thus, an extra state must be
maintained to track whether the current packet is from Windows
or Unix OS. As a fifth step, we check whether the “GET” string is
included at the beginning of the TCP payload. In the remaining
steps, we extract the URL information. After identifying HTTP
GET request packets, as a sixth step we register the source IP
address in a hash table ௗܶ , which will be explained in more detail
later, in order to track the connection status of each source IP
address to the URLs of the protected servers. According to
observation result on the distribution of URL length, 99.4% URLs
are shorter than 150 bytes [15][16]. Thus, in the seventh step we
find the end of URI from in_data, 64-bit unit of header and
payload of an incoming packet, by searching the pattern of ‘0x20’
that indicates the end of URI in in_data, which has a fixed width

of 64 bits in NetFPGA platform, in parallel. We repeat the seventh
step for the 64 bits of the subsequent in_data until the end of URI
is found. If the URL length exceeds 150 bytes, we just extract and
store the prefix of the length of 150 bytes. The initial five steps
are already implemented [14], and we added the remaining two
steps to extract URL information.

The previous seven steps designed to identify GET packets and
extract URL information is implemented by the state machine
shown in Figure 7. In order to check the previously mentioned
protocol header fields and the existence of the “GET” string at the
beginning of the TCP payload, the http_ddos_defense sub-module
carries out seven stages of elimination process on the left side of
Figure 7 to identify a GET packet, and the state machine
continuously carries out at least one or at most 19 more stages to
extract URI information. In the state of ‘URI_X_i’, the pattern
‘0x20’ is searched for the i-th 64 bit unit of TCP payload, where
1 ൑ ݅ ൑ 19. Since i can reach up to 19, 19 URI extraction stages
can cover the URI length of up to 152 byte, i.e. 99.4% URIs
according to [15][16]. If the current packet is a non-HTTP GET
packet or URI extraction finishes for a HTTP GET packet, the
state should be changed to the WAIT_IP_PROTO_LEN state
waiting for the new packet on the data bus. The
preprocess_control signals the http_ddos_defense when this data
is on the bus, and the elimination process is started. If any of the
checks fail, the state machine resets to the
WAIT_IP_PROTO_LEN state, and waits for a new packet.

WORD_7 is an idle state added to avoid unnecessary processing
on the 8-th word in Figure 6 without degrading the performance
of pipelining between the stages in Figure 7.

As a first prototype, we implement a simplified version of the
system described in Section 2. We only manage the per-URL
HTTP packet counting table ௗܶ instead of ௛ܶ and ௣ܶ of Figure 3 as
shown in Figure 8. Although ௗܶ is similar to the potential attacker
list ௣ܶ of Figure 3, the difference is that ௗܶ is shared among
different URLs because there is no ௛ܶ in the simplified version.
The hash table ௗܶ counts the number of HTTP request packets for
each pair of a source IP address and a URL measured in time
interval ܫ௧. ௗܶ is implemented as a register array managed in the
http_ddos_defense sub module. COUNT(u) counts the number of
accesses to the URL u. If a packet with a source IP s, destination
IP d and URL u increases the value of COUNT(u) over the
threshold ௧ܰ௛

ଶ , then s is considered as an attacker’s IP and any
subsequent packet from the IP address s will be dropped by the
defense system. In order to alleviate the effect of collision on the
hash table ௗܶ, we put two counters at each row to accommodate
two different IP addresses mapping to the same row. When a third
IP address arrives at a row with no empty space, if there is an IP
address that has a counter value of one, then the new IP address
replaces the entries of the old IP address with a small counter
value. If there is no IP address which has a counter value of one,
then the replacement does not occur. The whole hash table ௗܶ is
cleared at the interval of ܫ௧ to avoid overloading on it.

We can identify the target URL by extracting the URL
information from the detected packet. The detected packet signals
op_lut_process_sm to drop the packet and a duplicated copy of
the detected packet is sent to the host system so that the
corresponding application can display the list of the detected IP
addresses.

Figure 4. System Diagram

Figure 7. State transition diagram for the mechanism to
identify GET Packets and extract URI information

Figure 6. NetFPGA word alignment for Unix GET packets

Figure 5. Modification of op_lut_process_sm through addition of http_ddos_defense sub module

4. Numerical Result
We evaluate the performance of the proposed scheme through
experiment on a test bed. To evaluate the performance of the
proposed defense system, we measure CPU utilization, false
positives and false negatives of the defense system, and also
measure the CPU utilization of the victim servers and the
utilization of the link connecting the defense system to the servers.
We use three kinds of DDoS attack tools: Netbot_Attacker VIP
5.5, BlackEnergy and DoSHTTP 2.5. Each of these attack tools
can generate 100Mbps HTTP GET packet stream. Figure 9 shows
the network topology of the test bed. There are five PCs accessing
five web servers. Each PC can send HTTP GET flooding traffic at
the rate of up to 100Mbps. Thus, the maximum aggregate flooding
rate is 500Mbps. When only a part of these PCs attack the web
server, the remaining PCs become legitimate user machines.
Figure 10 compares the CPU utilization of NetFPGA
reference_router, the proposed DDoS defense system and Snort
(Software IDS tool) [17] under HTTP GET flooding attack. We
find that the software-based IDS tool Snort consumes the CPU
resource intensively (up to 100%). The CPU utilization of the
reference router is not that high since it does not perform DoS
detection or defense functionality, but only performs statistics
management. In case of our proposed defense system, both HTTP
GET packet detection and URL extraction are done in the
hardware, and only the packets that induces threshold crossing in
ௗܶ are sent to the application which displays the blacklist. Since

the application on the host processes less number of packets, the
CPU utilization can be reduced. Figure 11 compares the CPU
utilization of the victim servers protected by the proposed defense
system with that of the victims under no defense mechanism.
Figure 12 shows the utilization of the link between NetFPGA
node and Switch2 on the topology for the two cases with and
without the defense mechanism. From Figure 11 and Figure 12,
we find that the proposed defense system protect the given web
servers efficiently by maintaining the load on the victim server
and the network link low through filtering of attack traffic.
Because the DDoS attack tools have a much higher HTTP GET
request sending rate, i.e. 120 packets/sec, than the threshold (15
packets/sec), both the false positive and false negative
probabilities are measured to be 0. If we let ்ܴ೏denote the number
of rows in ௗܶ , then to total required memory size is 16Ⅹ்ܴ೏
bytes. In the considered scenario, we set the parameters as ்ܴ೏ =

10000, ௧ܰ௛
ଶ ,௧ = 1. Thus, the required memory, i.e. SRAMܫ ,15 =

size is about 160KB.

Figure 11. CPU utilization of the victim server

Figure 10. CPU utilization of the NetFPGA reference
router

Figure 9. Network Topology

Figure 8. Per-URL HTTP packet counting table ࢊࢀ

5. Conclusion
We proposed a hardware-based HTTP GET flooding defense
system which protects a given web server farm by discriminating
normal users from bots based on the difference of the behavior
between browsers and bots. The experiment results show that the
proposed defense system can protect web servers efficiently with
a reduced load on the CPU of the defense system host under sub-
gigabit rate of HTTP GET flooding attacks.

6. REFERENCES
[1] D. Dagon, G. Gu, C. P. Lee, and W. Lee. A Taxonomy of

Botnet Structures. In Proc. Annual Computer Security
Applications Conference (ACSAC), Dec. 2007.

[2] T. Peng, C. Leckie, and K. Ramamohanarao. Survey of
Network-Based Defense Mechanisms Countering the DoS
and DDoS Problems. ACM Computing Surveys, 39(1):1-42,
April 2007.

[3] S. Byers, A. D. Robin and D. Kormann. Defending Against
an Internet-Based Attack on the Physical World. ACM

Transactions on Internet Technology, 4(3): 239-254, August
2004.

[4] Mydoom. http://en.wikipedia.org/wiki/Mydoom
[5] Sionics and Kaientt. 7.7 DDoS: Unknown Secrets and Botnet

Counter-Attack. Power of Community, 2009.
[6] 7.7 DDoS analysis by Cisco Systems Korea.

http://www.cisco.com/web/KR/learning/events/
down/July_DDoS_Webseminar.pdf

[7] NetFPGA. http://netfpga.org/foswiki/bin/view/NetFPGA/
OneGig/Guide#Walkthrough_the_Reference_Designs

[8] Cisco Guard. http://www.cisco.com/en/US/products/ps5888
/index.html

[9] RioRey™ RX Series. http://www.riorey.com/rx-series/
[10] RioRey. Application note – New approach to application

level DDoS. Technical Documents, July 2009.
[11] Cisco systems. Defeating DDoS Attacks. White paper, 2004.
[12] K. S. Han and E. G. Im. A Study on the Analysis of Netbot

and Design of Detection Framework. In Proc. Of Joint
Workshop on Information Security, Aug. 2009.

[13] J. Nazario. BlackEnergy DDoS Bot Analysis. Arbor
Networks, 2007.

[14] M. Ciesla, V. Sivaraman and A. Seneviratne. URL
Extraction on the NetFPGA Reference Router. In Proc. of
NetFPGA Developers Workshop, 2009.

[15] T. Masao, O. Keizo, A Akiko, I. Haruko, M. Kengo, K. Shin,
Y. Hayato and H. Junya. Building a Terabyte-scale Web
Data Collection “NW1000G-04” in the NTCIR-5 WEB Task.
NII Technical Report, 2006.

[16] D. Gomes and M. J. Silva. On URL and content persistence.
Technical Report, Universidade de Lisboa, 2005.

[17] Snort. http://www.snort.org/

Figure 12. Network utilization of the link between
NetFPGA node and Switch2

