
Data Center Quantized Congestion Notification (QCN):
Implementation and Evaluation on NetFPGA

Abdul Kabbani
Department of Electrical Engineering

Stanford University
Stanford, CA, 94305, USA

akabbani@stanford.edu

Masato Yasuda
System IP Core Research Laboratories

NEC Corporation
Kawasaki, Kanagawa, 211-8666, Japan

m-yasuda@ct.jp.nec.com

ABSTRACT
We recently proposed QCN, a Layer 2 congestion control
mechanism, for high-speed data center networks (e.g. 10Gbps).
QCN has been going through the IEEE standardization process
and is officially finalized at this stage. As a Layer 2 protocol,
QCN has the significant advantage of being easy to implement in
hardware. By prototyping QCN on a NetFPGA board, we prove
this claim in this paper as we implement the first QCN system. We
furthermore demonstrate building a test-bed seed for conducting
further QCN experiments with various network settings and
topologies.

1. INTRODUCTION
The Data Center Bridging Task Group in the IEEE 802.1 Ethernet
standards body has several active projects aimed at enabling
enhancements to classical switched Ethernet so that it may
provide more services. Details of the DCB Task Group’s projects
are available at [1, 2]. Particularly relevant to the present paper is
the Quantized Congestion Notification protocol (QCN), the
essence of the Congestion Notification (CN, IEEE 802.1Qau)
project. QCN is a Layer 2 congestion control mechanism, in
which a congested switch can control the rates of Layer 2 sources
whose packets are passing through the switch. Thus, QCN induces
congestion control loops at Layer 2 similar to the well-known
TCP/RED control loops at Layer 3.

In this paper, we present the design and implementation of the
QCN system (NIC and Switch) on the NetFPGA platform [3, 4].
The NetFPGA platform is chosen because of its existing Ethernet
ports with 1Gbps bandwidth per port.

We demonstrate the following through our QCN prototype:

1) The first complete operation of QCN realized at 1Gbps
hardware with a 125MHz clock. The correctness of the
hardware implementation is further verified by simulations.

2) The QCN on-chip IP core is small, portable (not platform-
dependent and not limited to 1Gbps hardware), and simple.

3) Simple components can be added to the implementation
allowing us to easily build a test-bed for conducting further
experiments with:

(a) Scalable data center topologies

(b) Tunable network settings: per link round trip time,
capacity, and buffer depth.

(c) Tunable QCN parameters

(d) The ability to trace and analyze all major network and
QCN variables.

The rest of the paper is organized as follows. Section 2 describes
the QCN mechanism. Section 3 discusses the QCN design on the
NetFPGA platform. We evaluate the performance of this
implementation in Section 4, and we conclude and outline further
work in Section 5.

2. QCN MECHANISM
The QCN algorithm has been developed to provide congestion
control at the Ethernet layer. QCN allows a primary Layer 2
bottleneck to alleviate congestion by directly signaling those
Layer 2 sources whose packets pass through it to reduce their
rates.

As opposed to the Internet, the Ethernet is more constrained and
has challenging performance requirements. We summarize the
two sets below and refer the reader to previous work [5] for
further details.

Ethernet constraints:
No per-packet ACKs in Ethernet. This has several consequences
for congestion control mechanisms: (i) Packet transmission is not
self-clocked as in the Internet, (ii) path delays (RTT) are unknown,
and (iii) congestion must be signaled by switches directly to
sources.
Packets may not be dropped. Ethernet links may be paused and
packets may not be dropped for assuring loss-less delivery.
No packet sequence numbers. L2 packets do not have
sequence numbers from which RTTs, or the length of the
“control loop” in terms of number of packets in flight, may be
inferred.
Sources start at the line rate. Unlike the slow-start mechanism in
TCP, L2 sources may start transmission at the full line rate of
Ethernet Link.
Very shallow buffers. Ethernet switch buffers are typically 100s of
KBytes deep, as opposed to Internet router buffers which are 100s
of MBytes deep.
Small number-of-sources regime. In Ethernet (especially in Data
Centers), it is the small number of sources that is typical.
Multipathing. There is more than one path for packets to go from
an L2 source to an L2 destination. However, congestion levels on
the different paths may be vastly different.

mailto:akabbani@stanford.edu
mailto:m-yasuda@ct.jp.nec.com

Performance requirements:
The congestion control algorithm should be
Stable. Buffer occupancy processes should not fluctuate. The
algorithm needs to rapidly adapt source rates to these variations.
Responsive. Ethernet link bandwidth can vary with time due to
traffic fluctuation in other priorities. The algorithm needs to
rapidly adapt source rates to these variations.
Fair. When multiple flows share a link, they should obtain nearly
the same share of the link's bandwidth.
Simple to implement. The algorithm will be implemented entirely
in hardware for fine-grained rate limit control. Therefore, it
should be very simple.

The QCN Algorithm
We shall now describe the QCN algorithm [6]. The algorithm is
composed of two parts:

1) Switch or Congestion Point (CP) Dynamics: this is the
mechanism by which a switch buffer attached to an
oversubscribed link samples incoming packets and generates
a feedback message addressed to the source of the sampled
packet. The feedback message contains information about
the extent of congestion at the CP.

2) Rate limiter or Reaction Point (RP) Dynamics: this is the
mechanism by which a rate limiter (RL) associated with a
source decreases its sending rate based on feedback received
from the CP, and increases its rate voluntarily to recover lost
bandwidth and probe for extra available bandwidth.

The CP Algorithm
Following the practice in IEEE standards, we think of the CP as
an ideal output-queue switch even though actual implementations
may differ. The CP buffer is shown in Fig.1. The goal of the CP is
to maintain the buffer occupancy at a desired operating point, Qeq

1.
The CP computes a congestion measure Fb (defined below) and
sends the Fb value to the source of the sampled packet (normally,
the packet at the head of the queue at the time Fb was computed).
The higher Fb is, the more frequently incoming packets are
sampled and the more feedback messages are sent to the data
packets sources.

Let Q denote the instantaneous queue-size and Qold denote the
queue-size when the last feedback message was generated. Let
Qoff = Q - Qeq and Qdelta = Q - Qold, then Fb is given by the formula

)(deltaoff WQQFb (1)

where W is a non-negative constant, taken to be 2 for the baseline
implementation.

The interpretation is that Fb captures a combination of queue-size
excess (Qoff) and rate excess (Qdelta). Indeed, Qdelta = Q - Qold is the
derivative of the queue-size and equals input rate minus output
rate. Thus, when Fb is negative, either the buffers or the link or
both are oversubscribed, and a feedback message containing the

1 It is helpful to think of Qeq as roughly equal to 20% of the size

of the physical buffer.

Fb value, quantized to 6 bits, is sent. When Fb ≥ 0, there is no
congestion and no feedback messages are sent. Table 1 shows the
basic inter-sampling period at which a feedback message is
recomputed and reflected back to the source as a function of the
last computed Fb value. The actual inter-sampling period is the
basic inter-sampling period uniformly jittered by +/- 15%. Jitter is
introduced to increase the accuracy of sample.

Qoff

Q Qeq

Sample Incoming packets

Qoff

Q Qeq

Sample Incoming packets

Figure 1. Congestion detection in QCN CP

The RP Algorithm
Since the RP is not given positive rate-increase signals by the
network, it needs a mechanism for increasing its sending rate on
its own. Due to the absence of ACKs in Ethernet, the increases of
rate need to be clocked internally at the RP. Before proceeding to
explain the RP algorithm, we will need the following terminology:

 Current Rate (CR): The transmission rate of the RL at any
time.

 Target Rate (TR): The sending rate of the RL just before the
arrival of the last feedback message.

 Byte Counter: A counter at the RP for counting the number
of bytes transmitted by the RL. It times rate increases by the
RL. See below.

 Timer: A clock at the RP which is also used for timing rate
increases at the RL. The main purpose of the Timer is to
allow the RL to rapidly increase when its sending rate is
very low and there is a lot of bandwidth becomes available.
See below.

Table 1. basic inter-sampling period as a function of Fb

Floor (Fb/8) Basic inter-sampling period

0 150KB

1 75KB

2 50KB

3 37.5KB

4 30KB

5 25KB

6 21.5KB

7 18.5KB

We now explain the RP algorithm assuming that only the Byte
Counter is available. Later, we will explain how the Timer is
integrated into the RP algorithm. Fig.2 shows the basic RP
behavior.

Time

Ra
te

Current Rate

Congestion message recd

Rd
Rd/2

Rd/4
Rd/8

Target RateCR

TR

Active Increase

Fast Recovery

RAI

Time

Ra
te

Current Rate

Congestion message recd

Rd
Rd/2

Rd/4
Rd/8

Target RateCR

TR

Active Increase

Fast Recovery

RAI

Figure 2. QCN RP operation

Rate decreases: This occurs only when a feedback message is
received, in which case CR and TR are updated as follows:

)1(bd FGCRCR (2)

CRTR (3)

where the constant Gd is chosen so that Gd|Fbmax| = 0.5, i.e. the
sending rate can be decreased by at most 50%.

Rate increases: This occurs in two phases: Fast Recovery and
Active Increase.
Fast Recovery (FR): The Byte Counter is reset every time a rate
decrease is applied and it enters the FR state. FR consists of 5
cycles; each cycle equal to 150KB of data transmission by the RL
(jittered by +/- 15%). At the end of each cycle, TR remains
unchanged while CR is updated as follows:

2/)(TRCRCR (4)

Thus, the goal of the RP in FR is to rapidly recover the rate it lost
at the last rate decrease episode.

Active Increase (AI): After 5 cycles of FR have completed, the
RP enters the AI phase where it probes for extra bandwidth on the
path. During AI, the byte counter counts out cycles of 75KB
(jittered by +/- 15%). At the end of a feedback message, the RL
updates TR and CR as follows:

INCAITRTR _ (5)

2/)(TRCRCR (6)

where AI_INC is a constant chosen to be 5Mbps in the base-line
10Gbps implementation. This completes the description of the
basic RP algorithm using only the Byte Counter. Next we
motivate and discuss the details of the Timer operation.

Timer Motivation: Since rate increases using the Byte Counter
occur at times proportional to the current sending rate of the RL,
when the CR is very small, the duration of Byte Counter cycles
when measured in seconds can become unacceptably large. Since
the speed of bandwidth recovery (or responsiveness) is a key
performance metric, we have included the Timer in QCN.

Timer Operation: The Timer functions similarly as the Byte
Counter: it is reset when a feedback message arrives, enters FR
and counts out 5 cycles of TIMER_PERIOD duration
(TIMER_PERIOD is 15ms long in the 10Gbps baseline, jittered
by +/- 15%), and then enter AI where each cycle period is reduced
to half.

Even though the Byte Counter and Timer operate independently,
they are used jointly to determine rate increases at the RL as
shown in Fig.3. After a feedback message is received, they each
operate independently and execute their respective cycles of FR
and AI. Together, they determine the state of the RL and its rate
changes as follows.

 The RL is in FR if both the Byte Counter and the Timer are
in FR. In this case, when either the Byte Counter or the
Timer completes a cycle, CR is updated according to (4).

 The RL is in AI if only one of the Byte Counter and the
Timer is in AI. In this case, when either completes a cycle,
TR and CR are updated according to (5) and (6).

 The RL is in HAI (for Hyper-Active Increase) if both the
Byte Counter and the Timer are in AI. In this case, the ith
time that a cycle for either the Byte Counter or the Timer is
completed, TR and CR are updated as:

INCiHAITRTR _ (7)

2/)(TRCRCR (8)

where HAI_INC is a constant set to 50Mbps in the 10Gbps
baseline implementation. So the increments to TR (and hence of
CR) in HAI occur in multiples of 50Mbps.

Thus, the Byte Counter and Timer should be viewed as providing
“rate increase instances” to the RL. Their state determines the
state and, hence, the amounts of rate increase at the RL.

Two other crucial features of the QCN algorithm which are useful
for ensuring its reliable performance when the path bandwidth
suddenly drops remain to be mentioned:

Extra Fast Recovery: Whenever a RP gets consecutive Fb
messages (i.e. CR has not increased meanwhile), the RP does not
decrease TR and does not reset the Byte Counter except for the
first Fb. Everything else (CR and Timer reset) functions in the
same way as usual.

Target Rate Reduction: If TR is greater than CR by 10 times,
decrease TR by a factor of 8.

Byte-Ctr

Timer

RL

Byte-Ctr

Timer

RL

Figure 3. Byte Counter and Timer interaction with RL

3. IMPLEMENTATION

3.1 The NetFPGA Platform
NetFPGA [3, 4] is a programmable hardware platform for
network teaching and research. The platform has a built-in Xilinx
Virtex-II Pro FPGA (clocked at 125MHz) that performs all media
access control (MAC) functions, and it attaches to the PCI bus of
a Linux-based PC. The NetFPGA card has four Gigabit Ethernet
ports, four ports internally connected to the host, and 4MB of
SRAM.

3.2 QCN Design
Our implementation is within the User Data Path module
provided by the NetFPGA common library. Next we show the
QCN Switch and NIC implementation.

QCN Switch
Fig.4 shows the QCN Switch block diagram. Incoming packets
are arbitrated in a round-robin fashion and forwarded to the
appropriate output port/queue depending on the forwarding
information set by the user. For the sake of our evaluation, we
implemented the QCN Switch with one Congestion point only
that receives all incoming packets regardless of their physical
network port and forwards them to Output-Port0.

Before a packet is enqueued (Receive Block):

(i) Its source & destination MAC addresses are extracted.
These fields are potentially needed in case a congestion
message is to be generated.

(ii) The Byte Counter field is decremented by the packet size.

In the mean time, the Fb Generator module keeps track of the
current and past Queue length, waiting for the Byte Counter to
reset in order to:

(i) Set Qold equal to the current queue length.

(ii) Compute the Fb value via the Fb Calculator module. If the
computed value is negative, a congestion message is sent
back to the source of the sampled packet. The structure of
the congestion message is shown in Fig.5.

(iii) Re-initialize the Byte Counter value as defined in Table1
with +/- 15% jitter.

Congestion messages are then forwarded to the output MAC at
the highest priority.

QCN NIC
Fig.6 shows the QCN NIC design with four Reaction Points (due
to the NetFPGA logic space limitation). Packets are either
forwarded from the host or internally generated at 1Gbps via the
UDP Pkt Gen modules within each Reaction Point (each UDP Pkt
Gen has a distinct source MAC address).

Forwarded and generated packets pass through a Token Bucket
Rate Limiter. The depth of the bucket is arbitrarily set to 3KB.

Tokens of size proportional to CR (fed from the Rate Calculator
module) are periodically added every 16usec.

User Data Path

Fb Calculator

Qlen
Monitor

Fb Generator

Prioritized
Mux

Output
Queues

Input
Arbiter

Packet
Parser

Port Byte
Count

Receive Block

Fwd
Port

Congestion Point

src/dst mac
src/dst port

Demux
4port

Prioritized
Mux

Prioritized
Mux

Prioritized
MuxRate

Limiter

SRAM

Figure 4. QCN Switch Architecture

SRC MAC[48:32]DST MAC[47:0]

63 0

SRC MAC[31:0] Type = 16’hXXXX QCN Field[15:0]

flowid[7:0] qcn_fb[5:0]

Ethernet Padding

reserved(2bits)

QCN Field[15:0]

Figure 5. Congestion Message Format

Hence, with the smallest token size being 1byte, the minimum
achievable rate of the token bucket is 0.5Mbps (i.e. 0.5Mbps rate
granularity as well).

The Rate Calculator module, in its turn, keeps track of the CR, TR,
Byte Counter stage, and Timer stage and is triggered by:

(i) Received congestions messages: The Receive module
checks if the received packet matches the Type field of the
congestion message (Fig.5), and extracts the Fb value and
the destination MAC if so. The Fb value is forwarded to the
appropriate RP via the Fb Demux module based on the
extracted MAC address.

(ii) Byte Counter expiries: The Byte Count module expires
when either 150KB or 75KB (the value depending on the
Byte Counting stage and uniformly jittered by +/- 15%)
worth of packets are sent out from the RL.

(iii) Timer expiries: The timer value is either 25msec or
12.5msec (also depending on the Timer Stage and uniformly
jittered by +/- 15%).

Finally, and right before exiting the Reaction Point module, in the
case of forwarded and generated packets, and before reaching the
Receive module, in the case of arriving packets, we pass these
packets through an SRAM-implemented circular FIFO. This
module mimics links with larger delays and is denoted by the
Delay Line module. It can artificially introduce per-link round-trip
delay on each outgoing link independently and up to 64msec for
the 4 outgoing links aggregately. The Delay Line module is by no
means part of the QCN-related implementation, but is very critical
for the flexibility of our experimental setup.

User Data Path

Input
Arbiter

Demux DemuxMux

Delay Line

SRAM

Receive

Packet
parser

QCN
Terminator

Fb Demux
qcn_fb, flowid

Rate
Calculator

Timer

Byte Count

Token Bucket
Rate Limiter

UDP Pkt
Gen

Reaction Point 0

Demux Mux

Reaction Point 1
Reaction Point 2

Reaction Point 3

Figure 6. QCN NIC Architecture

4. PERFORMANCE EVALUATION

4.1 Setup
We use two NetFPGAs as QCN NICs and a third one as a QCN
Switch. The setup is shown in Fig.7a with up to 8 RPs all sending
their internally generated UDP traffic to the same Output Queue
of size 150KB. A rate limiter is added to control the switch
service rate as needed for our experiments, after which packets get
dropped.

For our particular experiments, we vary the number of active RPs
from 1 to 8, we vary the round-trip time (RTT) between 100us
and 1000us, and we reduce the switch service rate from 0.95Gbps
to 0.2Gbps for a period of 3.7sec and increase it back to 0.95Gbps
afterwards as shown in Fig.7b. Meanwhile, we report the CP
queue size & the switch rate utilization results, and we compare
our results with those obtained using OMNeT++ simulator [7].

Table 2 shows the QCN parameters in our evaluation. These
parameters are based on IEEE standards.

Table 2. QCN Evaluation Parameters

QCN NIC Paramters
AI_INC 0.5Mbps

HAI_INC 5Mbps

Gd 1/128
QCN Switch Parameters

Qeq 33KB

W 2

QCN-NIC0

QCN-Switch

Port1
MAC

Port2
MAC

QCN-NIC1
CP

Rate
Limiter

Fb

Mux

Demux

drop

RP0

RP1

RP2

RP3

Receive

Mux

MACDelay
Line

RP0

RP1

RP2

RP3

Receive

Mux

MACDelay
Line

Port0
MAC

Output
Queue
(Port0)

Fwd
Port

(a)

NIC 1

NIC 2

0.2 G

0.95 G 0.95 G

NIC 1

NIC 2

0.2 G

0.95 G 0.95 G

(b)

Figure 7. Network Setup

4.2 Results
Figures 8 through 13 show that our implementation results closely
match OMNeT++ results in all cases. Other experiments have
been also run with different number of active RPs, different RTTs,
and different switch service rates to further verify the
implementation correctness, but the results are not reported to
avoid redundancy.

5. CONCLUSION AND FUTURE WORK
We built a prototype of the QCN system on the NetFPGA
platform, demonstrated the ease of implementation, and achieved
the expected performance. A wide spectrum of data center
topologies and network settings can now be evaluated under QCN.
We are currently adding Priority-based Flow Control functions
(PFC, IEEE 802.1Qbb) to our implementation.
We are also evaluating TCP’s performance with QCN and are
interested in further studying the interaction with the PFC
functions.

6. ACKNOWLEDGMENTS
We thank Prof. Prabhakar for his guidance and valuable feedback
throughout the project. We also thank Dr. John Lockwood and
Adam Covington for letting us share their NetFPGA machines
earlier, Jianying Luo for helping provide the delay line and jitter
components, and Berk Atikoglu for running OMNeT++
simulations.

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Evaluation Time [sec]

Q
ue

ue
 S

iz
e

[K
B

yt
es

]

0

200

400

600

800

1000

1 3 5 7 9 11
Evaluation Time [sec]

R
at

e
[M

bp
s]

0
20
40
60
80

100
120
140

1 3 5 7 9 11
Simulation Time [sec]

Q
ue

ue
 S

iz
e

[K
By

te
s]

0

200

400

600

800

1000

1 3 5 7 9 11
Simulation Time [sec]

R
at

e
[M

bp
s]

(a) (b)

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Evaluation Time [sec]

Q
ue

ue
 S

iz
e

[K
B

yt
es

]

0

200

400

600

800

1000

1 3 5 7 9 11
Evaluation Time [sec]

R
at

e
[M

bp
s]

0
20
40
60
80

100
120
140

1 3 5 7 9 11
Simulation Time [sec]

Q
ue

ue
 S

iz
e

[K
By

te
s]

0

200

400

600

800

1000

1 3 5 7 9 11
Simulation Time [sec]

R
at

e
[M

bp
s]

(a) (b)
Figure 8. Queue Size and Utilization in (a) Hardware and (b)

OMNeT++ , 1 source – 100u RTT

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Evaluation Time [sec]

Q
ue

ue
 S

iz
e

[K
By

te
s]

0

200

400

600

800

1000

1 3 5 7 9 11

Evaluation Time [sec]

R
at

e
[M

bp
s]

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Simulation Time [sec]

Q
ue

ue
 S

iz
e

[K
B

yt
es

]

0

200

400

600

800

1000

1 3 5 7 9 11

Simulation Time [sec]

R
at

e
[M

bp
s]

(a) (b)

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Evaluation Time [sec]

Q
ue

ue
 S

iz
e

[K
By

te
s]

0

200

400

600

800

1000

1 3 5 7 9 11

Evaluation Time [sec]

R
at

e
[M

bp
s]

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Simulation Time [sec]

Q
ue

ue
 S

iz
e

[K
B

yt
es

]

0

200

400

600

800

1000

1 3 5 7 9 11

Simulation Time [sec]

R
at

e
[M

bp
s]

(a) (b)
Figure 9. Queue Size and Utilization in (a) Hardware and (b)

OMNeT++ , 1 source – 500u RTT

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Evaluation Time [sec]

Q
ue

ue
 S

iz
e

[K
By

te
s]

0

200

400

600

800

1000

1 3 5 7 9 11

Evaluation Time [sec]

R
at

e
[M

bp
s]

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Simulation Time [sec]

Q
ue

ue
 S

iz
e

[K
B

yt
es

]

0

200

400

600

800

1000

1 3 5 7 9 11

Simulation Time [sec]

R
at

e
[M

bp
s]

(a) (b)

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Evaluation Time [sec]

Q
ue

ue
 S

iz
e

[K
By

te
s]

0

200

400

600

800

1000

1 3 5 7 9 11

Evaluation Time [sec]

R
at

e
[M

bp
s]

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Simulation Time [sec]

Q
ue

ue
 S

iz
e

[K
B

yt
es

]

0

200

400

600

800

1000

1 3 5 7 9 11

Simulation Time [sec]

R
at

e
[M

bp
s]

(a) (b)
Figure 10. Queue Size and Utilization in (a) Hardware and (b)

OMNeT++ , 1 source – 1000u RTT

7. REFERENCES
[1] Data Center Bridging Task Group.

http://www.ieee802.org/1/pages/dcbridges.html
[2] Berk, Atikoglu, Abdul Kabbani, Rong Pan, Balaji Prabhakar,

and Mick Seaman, "The Origin, Evolution and Current
Status of QCN", IEEE802.1Qau, January 2008.
http://www.ieee802.org/1/files/public/docs2008/au-
prabhakar-qcn-los-gatos-0108.pdf

[3] NetFPGA Project. http://netfpga.org
[4] M. Casado, G. Watson, and N. McKeown, “Reconfigurable

networking hardware: A classroom tool”, Hot Interconnects
13, Stanford, August 2005.

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Evaluation Time [sec]

Q
ue

ue
 S

iz
e

[K
By

te
s]

0

200

400

600

800

1000

1 3 5 7 9 11

Evaluation Time [sec]

R
at

e
[M

bp
s]

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Simulation Time [sec]

Q
ue

ue
 S

iz
e

[K
B

yt
es

]

0

200

400

600

800

1000

1 3 5 7 9 11

Simulation Time [sec]

R
at

e
[M

bp
s]

(a) (b)

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Evaluation Time [sec]

Q
ue

ue
 S

iz
e

[K
By

te
s]

0

200

400

600

800

1000

1 3 5 7 9 11

Evaluation Time [sec]

R
at

e
[M

bp
s]

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Simulation Time [sec]

Q
ue

ue
 S

iz
e

[K
B

yt
es

]

0

200

400

600

800

1000

1 3 5 7 9 11

Simulation Time [sec]

R
at

e
[M

bp
s]

(a) (b)
Figure 11. Queue Size and Utilization in (a) Hardware and (b)

OMNeT++ , 8 sources – 100u RTT

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Evaluation Time [sec]

Q
ue

ue
 S

iz
e

[K
By

te
s]

0

200

400

600

800

1000

1 3 5 7 9 11

Evaluation Time [sec]

R
at

e
[M

bp
s]

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Simulation Time [sec]

Q
ue

ue
 S

iz
e

[K
B

yt
es

]

0

200

400

600

800

1000

1 3 5 7 9 11

Simulation Time [sec]

R
at

e
[M

bp
s]

(a) (b)

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Evaluation Time [sec]

Q
ue

ue
 S

iz
e

[K
By

te
s]

0

200

400

600

800

1000

1 3 5 7 9 11

Evaluation Time [sec]

R
at

e
[M

bp
s]

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Simulation Time [sec]

Q
ue

ue
 S

iz
e

[K
B

yt
es

]

0

200

400

600

800

1000

1 3 5 7 9 11

Simulation Time [sec]

R
at

e
[M

bp
s]

(a) (b)
Figure 12. Queue Size and Utilization in (a) Hardware and (b)

OMNeT++ , 8 sources – 500u RTT

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Evaluation Time [sec]

Q
ue

ue
 S

iz
e

[K
By

te
s]

0

200

400

600

800

1000

1 3 5 7 9 11

Evaluation Time [sec]

R
at

e
[M

bp
s]

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Simulation Time [sec]

Q
ue

ue
 S

iz
e

[K
B

yt
es

]

0

200

400

600

800

1000

1 3 5 7 9 11

Simulation Time [sec]

R
at

e
[M

bp
s]

(a) (b)

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Evaluation Time [sec]

Q
ue

ue
 S

iz
e

[K
By

te
s]

0

200

400

600

800

1000

1 3 5 7 9 11

Evaluation Time [sec]

R
at

e
[M

bp
s]

0
20
40
60
80

100
120
140

1 3 5 7 9 11

Simulation Time [sec]

Q
ue

ue
 S

iz
e

[K
B

yt
es

]

0

200

400

600

800

1000

1 3 5 7 9 11

Simulation Time [sec]

R
at

e
[M

bp
s]

(a) (b)
Figure 13. Queue Size and Utilization in (a) Hardware and (b)

OMNeT++ , 8 sources – 1000u RTT

[5] .M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R.

Pan, B. Prabhakar, and M. Seaman, "Data Center Transport
Mechanisms: Congestion Control Theory and IEEE
Standardization" , Annual Allerton Conference, 2008.

[6] IEEE802.1Qau Draft version 2.4, December 2009.
http://www.ieee802.org/1/files/private/au-drafts/d2/802-1au-
d2-4.pdf

[7] FA. Varga, "The OMNeT++ discrete event simulation
system", In European Simulation Multiconference
(ESM'2001), Prague, Czech Republic, June 2001.

http://www.ieee802.org/1/pages/dcbridges.html
http://www.ieee802.org/1/files/public/docs2008/au-
http://netfpga.org
http://www.ieee802.org/1/files/private/au-drafts/d2/802-1au-

