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ABSTRACT 
We recently proposed QCN, a Layer 2 congestion control 
mechanism, for high-speed data center networks (e.g. 10Gbps). 
QCN has been going through the IEEE standardization process 
and is officially finalized at this stage. As a Layer 2 protocol, 
QCN has the significant advantage of being easy to implement in 
hardware. By prototyping QCN on a NetFPGA board, we prove 
this claim in this paper as we implement the first QCN system. We 
furthermore demonstrate building a test-bed seed for conducting 
further QCN experiments with various network settings and 
topologies.  

1. INTRODUCTION 
The Data Center Bridging Task Group in the IEEE 802.1 Ethernet 
standards body has several active projects aimed at enabling 
enhancements to classical switched Ethernet so that it may 
provide more services. Details of the DCB Task Group’s projects 
are available at [1, 2]. Particularly relevant to the present paper is 
the Quantized Congestion Notification protocol (QCN), the 
essence of the Congestion Notification (CN, IEEE 802.1Qau) 
project. QCN is a Layer 2 congestion control mechanism, in 
which a congested switch can control the rates of Layer 2 sources 
whose packets are passing through the switch. Thus, QCN induces 
congestion control loops at Layer 2 similar to the well-known 
TCP/RED control loops at Layer 3. 

In this paper, we present the design and implementation of the 
QCN system (NIC and Switch) on the NetFPGA platform [3, 4]. 
The NetFPGA platform is chosen because of its existing Ethernet 
ports with 1Gbps bandwidth per port. 

We demonstrate the following through our QCN prototype: 

1) The first complete operation of QCN realized at 1Gbps 
hardware with a 125MHz clock. The correctness of the 
hardware implementation is further verified by simulations. 

2) The QCN on-chip IP core is small, portable (not platform-
dependent and not limited to 1Gbps hardware), and simple. 

3) Simple components can be added to the implementation 
allowing us to easily build a test-bed for conducting further 
experiments with: 

(a) Scalable data center topologies 

(b) Tunable network settings: per link round trip time, 
capacity, and buffer depth. 

(c) Tunable QCN parameters 

(d) The ability to trace and analyze all major network and 
QCN variables. 

The rest of the paper is organized as follows. Section 2 describes 
the QCN mechanism. Section 3 discusses the QCN design on the 
NetFPGA platform. We evaluate the performance of this 
implementation in Section 4, and we conclude and outline further 
work in Section 5. 

2. QCN MECHANISM 
The QCN algorithm has been developed to provide congestion 
control at the Ethernet layer. QCN allows a primary Layer 2 
bottleneck to alleviate congestion by directly signaling those 
Layer 2 sources whose packets pass through it to reduce their 
rates. 

As opposed to the Internet, the Ethernet is more constrained and 
has challenging performance requirements. We summarize the 
two sets below and refer the reader to previous work [5] for 
further details. 

Ethernet constraints: 
No per-packet ACKs in Ethernet. This has several consequences 
for congestion control mechanisms: (i) Packet transmission is not 
self-clocked as in the Internet, (ii) path delays (RTT) are unknown, 
and (iii) congestion must be signaled by switches directly to 
sources. 
Packets may not be dropped. Ethernet links may be paused and 
packets may not be dropped for assuring loss-less delivery.  
No packet sequence numbers. L2 packets do not have 
sequence numbers from which RTTs, or the length of the
“control loop” in terms of number of packets in flight, may be 
inferred. 
Sources start at the line rate. Unlike the slow-start mechanism in 
TCP, L2 sources may start transmission at the full line rate of 
Ethernet Link.  
Very shallow buffers. Ethernet switch buffers are typically 100s of 
KBytes deep, as opposed to Internet router buffers which are 100s 
of MBytes deep.  
Small number-of-sources regime. In Ethernet (especially in Data 
Centers), it is the small number of sources that is typical.  
Multipathing. There is more than one path for packets to go from 
an L2 source to an L2 destination. However, congestion levels on 
the different paths may be vastly different. 
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Performance requirements: 
The congestion control algorithm should be  
Stable. Buffer occupancy processes should not fluctuate. The 
algorithm needs to rapidly adapt source rates to these variations. 
Responsive. Ethernet link bandwidth can vary with time due to 
traffic fluctuation in other priorities. The algorithm needs to 
rapidly adapt source rates to these variations. 
Fair. When multiple flows share a link, they should obtain nearly 
the same share of the link's bandwidth. 
Simple to implement. The algorithm will be implemented entirely 
in hardware for fine-grained rate limit control. Therefore, it 
should be very simple. 

The QCN Algorithm 
We shall now describe the QCN algorithm [6]. The algorithm is 
composed of two parts: 

1) Switch or Congestion Point (CP) Dynamics: this is the 
mechanism by which a switch buffer attached to an 
oversubscribed link samples incoming packets and generates 
a feedback message addressed to the source of the sampled 
packet. The feedback message contains information about 
the extent of congestion at the CP. 

2) Rate limiter or Reaction Point (RP) Dynamics: this is the 
mechanism by which a rate limiter (RL) associated with a 
source decreases its sending rate based on feedback received 
from the CP, and increases its rate voluntarily to recover lost 
bandwidth and probe for extra available bandwidth. 

The CP Algorithm 
Following the practice in IEEE standards, we think of the CP as 
an ideal output-queue switch even though actual implementations 
may differ. The CP buffer is shown in Fig.1. The goal of the CP is 
to maintain the buffer occupancy at a desired operating point, Qeq

1.  
The CP computes a congestion measure Fb (defined below) and 
sends the Fb value to the source of the sampled packet (normally, 
the packet at the head of the queue at the time Fb was computed). 
The higher Fb is, the more frequently incoming packets are 
sampled and the more feedback messages are sent to the data 
packets sources. 

Let Q denote the instantaneous queue-size and Qold denote the 
queue-size when the last feedback message was generated. Let 
Qoff = Q - Qeq and Qdelta = Q - Qold, then Fb is given by the formula 

)( deltaoff WQQFb   (1) 

where W is a non-negative constant, taken to be 2 for the baseline 
implementation. 

The interpretation is that Fb captures a combination of queue-size 
excess (Qoff) and rate excess (Qdelta). Indeed, Qdelta = Q - Qold is the 
derivative of the queue-size and equals input rate minus output 
rate. Thus, when Fb is negative, either the buffers or the link or 
both are oversubscribed, and a feedback message containing the 

                                                                 
1 It is helpful to think of Qeq as roughly equal to 20% of the size 

of the physical buffer. 

Fb value, quantized to 6 bits, is sent. When Fb ≥ 0, there is no 
congestion and no feedback messages are sent. Table 1 shows the 
basic inter-sampling period at which a feedback message is 
recomputed and reflected back to the source as a function of the 
last computed Fb value. The actual inter-sampling period is the 
basic inter-sampling period uniformly jittered by +/- 15%. Jitter is 
introduced to increase the accuracy of sample. 

Qoff

Q Qeq

Sample Incoming packets

Qoff

Q Qeq

Sample Incoming packets
 

Figure 1. Congestion detection in QCN CP 

The RP Algorithm 
Since the RP is not given positive rate-increase signals by the 
network, it needs a mechanism for increasing its sending rate on 
its own. Due to the absence of ACKs in Ethernet, the increases of 
rate need to be clocked internally at the RP. Before proceeding to 
explain the RP algorithm, we will need the following terminology: 

 Current Rate (CR): The transmission rate of the RL at any 
time. 

 Target Rate (TR): The sending rate of the RL just before the 
arrival of the last feedback message. 

 Byte Counter: A counter at the RP for counting the number 
of bytes transmitted by the RL. It times rate increases by the 
RL. See below. 

 Timer: A clock at the RP which is also used for timing rate 
increases at the RL. The main purpose of the Timer is to 
allow the RL to rapidly increase when its sending rate is 
very low and there is a lot of bandwidth becomes available. 
See below. 

 

Table 1.  basic inter-sampling period as a function of Fb 

Floor (Fb/8) Basic inter-sampling period 

0 150KB 

1 75KB 

2 50KB 

3 37.5KB 

4 30KB 

5 25KB 

6 21.5KB 

7 18.5KB 



We now explain the RP algorithm assuming that only the Byte 
Counter is available. Later, we will explain how the Timer is 
integrated into the RP algorithm. Fig.2 shows the basic RP 
behavior. 
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Figure 2. QCN RP operation 

Rate decreases: This occurs only when a feedback message is 
received, in which case CR and TR are updated as follows: 

)1( bd FGCRCR   (2) 

CRTR   (3) 

where the constant Gd is chosen so that Gd|Fbmax| = 0.5, i.e. the 
sending rate can be decreased by at most 50%. 

Rate increases: This occurs in two phases: Fast Recovery and 
Active Increase. 
Fast Recovery (FR): The Byte Counter is reset every time a rate 
decrease is applied and it enters the FR state. FR consists of 5 
cycles; each cycle equal to 150KB of data transmission by the RL 
(jittered by +/- 15%). At the end of each cycle, TR remains 
unchanged while CR is updated as follows: 

2/)( TRCRCR   (4) 

Thus, the goal of the RP in FR is to rapidly recover the rate it lost 
at the last rate decrease episode. 

Active Increase (AI): After 5 cycles of FR have completed, the 
RP enters the AI phase where it probes for extra bandwidth on the 
path. During AI, the byte counter counts out cycles of 75KB 
(jittered by +/- 15%). At the end of a feedback message, the RL 
updates TR and CR as follows: 

INCAITRTR _    (5) 

2/)( TRCRCR   (6) 

where AI_INC is a constant chosen to be 5Mbps in the base-line 
10Gbps implementation. This completes the description of the 
basic RP algorithm using only the Byte Counter. Next we 
motivate and discuss the details of the Timer operation. 

Timer Motivation: Since rate increases using the Byte Counter 
occur at times proportional to the current sending rate of the RL, 
when the CR is very small, the duration of Byte Counter cycles 
when measured in seconds can become unacceptably large. Since 
the speed of bandwidth recovery (or responsiveness) is a key 
performance metric, we have included the Timer in QCN. 

Timer Operation: The Timer functions similarly as the Byte 
Counter: it is reset when a feedback message arrives, enters FR 
and counts out 5 cycles of TIMER_PERIOD duration 
(TIMER_PERIOD is 15ms long in the 10Gbps baseline, jittered 
by +/- 15%), and then enter AI where each cycle period is reduced 
to half. 

Even though the Byte Counter and Timer operate independently, 
they are used jointly to determine rate increases at the RL as 
shown in Fig.3. After a feedback message is received, they each 
operate independently and execute their respective cycles of FR 
and AI. Together, they determine the state of the RL and its rate 
changes as follows. 

 The RL is in FR if both the Byte Counter and the Timer are 
in FR. In this case, when either the Byte Counter or the 
Timer completes a cycle, CR is updated according to (4). 

 The RL is in AI if only one of the Byte Counter and the 
Timer is in AI. In this case, when either completes a cycle, 
TR and CR are updated according to (5) and (6). 

 The RL is in HAI (for Hyper-Active Increase) if both the 
Byte Counter and the Timer are in AI. In this case, the ith 
time that a cycle for either the Byte Counter or the Timer is 
completed, TR and CR are updated as: 

INCiHAITRTR _  (7) 

2/)( TRCRCR   (8) 

where HAI_INC is a constant set to 50Mbps in the 10Gbps 
baseline implementation. So the increments to TR (and hence of 
CR) in HAI occur in multiples of 50Mbps. 

Thus, the Byte Counter and Timer should be viewed as providing 
“rate increase instances” to the RL. Their state determines the 
state and, hence, the amounts of rate increase at the RL. 

Two other crucial features of the QCN algorithm which are useful 
for ensuring its reliable performance when the path bandwidth 
suddenly drops remain to be mentioned: 

Extra Fast Recovery: Whenever a RP gets consecutive Fb 
messages (i.e. CR has not increased meanwhile), the RP does not 
decrease TR and does not reset the Byte Counter except for the 
first Fb. Everything else (CR and Timer reset) functions in the 
same way as usual. 

Target Rate Reduction: If TR is greater than CR by 10 times, 
decrease TR by a factor of 8. 
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Figure 3. Byte Counter and Timer interaction with RL 



3. IMPLEMENTATION 

3.1 The NetFPGA Platform 
NetFPGA [3, 4] is a programmable hardware platform for 
network teaching and research. The platform has a built-in Xilinx 
Virtex-II Pro FPGA (clocked at 125MHz) that performs all media 
access control (MAC) functions, and it attaches to the PCI bus of 
a Linux-based PC. The NetFPGA card has four Gigabit Ethernet 
ports, four ports internally connected to the host, and 4MB of 
SRAM. 

3.2 QCN Design 
Our implementation is within the User Data Path module 
provided by the NetFPGA common library. Next we show the 
QCN Switch and NIC implementation. 

QCN Switch 
Fig.4 shows the QCN Switch block diagram. Incoming packets 
are arbitrated in a round-robin fashion and forwarded to the 
appropriate output port/queue depending on the forwarding 
information set by the user. For the sake of our evaluation, we 
implemented the QCN Switch with one Congestion point only 
that receives all incoming packets regardless of their physical 
network port and forwards them to Output-Port0. 

Before a packet is enqueued (Receive Block): 

(i) Its source & destination MAC addresses are extracted. 
These fields are potentially needed in case a congestion 
message is to be generated. 

(ii) The Byte Counter field is decremented by the packet size. 

In the mean time, the Fb Generator module keeps track of the 
current and past Queue length, waiting for the Byte Counter to 
reset in order to: 

(i) Set Qold equal to the current queue length. 

(ii) Compute the Fb value via the Fb Calculator module. If the 
computed value is negative, a congestion message is sent 
back to the source of the sampled packet. The structure of 
the congestion message is shown in Fig.5. 

(iii) Re-initialize the Byte Counter value as defined in Table1 
with +/- 15% jitter. 

Congestion messages are then forwarded to the output MAC at 
the highest priority. 

QCN NIC 
Fig.6 shows the QCN NIC design with four Reaction Points (due 
to the NetFPGA logic space limitation). Packets are either 
forwarded from the host or internally generated at 1Gbps via the 
UDP Pkt Gen modules within each Reaction Point (each UDP Pkt 
Gen has a distinct source MAC address). 

Forwarded and generated packets pass through a Token Bucket 
Rate Limiter. The depth of the bucket is arbitrarily set to 3KB. 

Tokens of size proportional to CR (fed from the Rate Calculator 
module) are periodically added every 16usec. 
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Figure 4. QCN Switch Architecture 

SRC  MAC[48:32]DST MAC[47:0]

63 0

SRC MAC[31:0] Type = 16’hXXXX QCN Field[15:0]

flowid[7:0] qcn_fb[5:0]

Ethernet Padding

reserved(2bits)

QCN Field[15:0]

 
Figure 5. Congestion Message Format 

 
Hence, with the smallest token size being 1byte, the minimum 
achievable rate of the token bucket is 0.5Mbps (i.e. 0.5Mbps rate 
granularity as well). 

The Rate Calculator module, in its turn, keeps track of the CR, TR, 
Byte Counter stage, and Timer stage and is triggered by: 

(i) Received congestions messages: The Receive module 
checks if the received packet matches the Type field of the 
congestion message (Fig.5), and extracts the Fb value and 
the destination MAC if so. The Fb value is forwarded to the 
appropriate RP via the Fb Demux module based on the 
extracted MAC address. 

(ii) Byte Counter expiries: The Byte Count module expires 
when either 150KB or 75KB (the value depending on the 
Byte Counting stage and uniformly jittered by +/- 15%) 
worth of packets are sent out from the RL.  

(iii) Timer expiries: The timer value is either 25msec or 
12.5msec (also depending on the Timer Stage and uniformly 
jittered by +/- 15%). 

Finally, and right before exiting the Reaction Point module, in the 
case of forwarded and generated packets, and before reaching the 
Receive module, in the case of arriving packets, we pass these 
packets through an SRAM-implemented circular FIFO. This 
module mimics links with larger delays and is denoted by the 
Delay Line module. It can artificially introduce per-link round-trip 
delay on each outgoing link independently and up to 64msec for 
the 4 outgoing links aggregately. The Delay Line module is by no 
means part of the QCN-related implementation, but is very critical 
for the flexibility of our experimental setup. 
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Figure 6. QCN NIC Architecture 

 

4. PERFORMANCE EVALUATION 

4.1 Setup 
We use two NetFPGAs as QCN NICs and a third one as a QCN 
Switch. The setup is shown in Fig.7a with up to 8 RPs all sending 
their internally generated UDP traffic to the same Output Queue 
of size 150KB. A rate limiter is added to control the switch 
service rate as needed for our experiments, after which packets get 
dropped. 

For our particular experiments, we vary the number of active RPs 
from 1 to 8, we vary the round-trip time (RTT) between 100us 
and 1000us, and we reduce the switch service rate from 0.95Gbps 
to 0.2Gbps for a period of 3.7sec and increase it back to 0.95Gbps 
afterwards as shown in Fig.7b. Meanwhile, we report the CP 
queue size & the switch rate utilization results, and we compare 
our results with those obtained using OMNeT++ simulator [7]. 

Table 2 shows the QCN parameters in our evaluation. These 
parameters are based on IEEE standards. 
 

Table 2. QCN Evaluation Parameters  

QCN NIC Paramters 
AI_INC 0.5Mbps 

HAI_INC 5Mbps 

Gd 1/128 
QCN Switch Parameters 

Qeq 33KB 

W 2 
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Figure 7. Network Setup 
 

4.2 Results 
Figures 8 through 13 show that our implementation results closely 
match OMNeT++ results in all cases. Other experiments have 
been also run with different number of active RPs, different RTTs, 
and different switch service rates to further verify the 
implementation correctness, but the results are not reported to 
avoid redundancy.   

5. CONCLUSION AND FUTURE WORK 
We built a prototype of the QCN system on the NetFPGA 
platform, demonstrated the ease of implementation, and achieved 
the expected performance. A wide spectrum of data center 
topologies and network settings can now be evaluated under QCN. 
We are currently adding Priority-based Flow Control functions 
(PFC, IEEE 802.1Qbb) to our implementation. 
We are also evaluating TCP’s performance with QCN and are 
interested in further studying the interaction with the PFC 
functions. 
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Figure 8. Queue Size and Utilization in (a) Hardware and (b) 

OMNeT++ , 1 source – 100u RTT 
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Figure 9. Queue Size and Utilization in (a) Hardware and (b) 

OMNeT++ , 1 source – 500u RTT 
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Figure 10. Queue Size and Utilization in (a) Hardware and (b) 

OMNeT++ , 1 source – 1000u RTT 
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OMNeT++ , 8 sources – 100u RTT 
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Figure 12. Queue Size and Utilization in (a) Hardware and (b) 

OMNeT++ , 8 sources – 500u RTT 
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Figure 13. Queue Size and Utilization in (a) Hardware and (b) 

OMNeT++ , 8 sources – 1000u RTT  
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