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ABSTRACT 
The ARINC 664-7 called as Avionics Full Duplex Switched 
Ethernet (AFDX) deployed in modern aircrafts offers reliability 
and higher bandwidth for aircraft data network (ADN). The 
AFDX network system adopted the IEEE 802.3 Ethernet 
technology and added some special features to compose 
deterministic and fault-tolerant network. Transmitting 
characteristics of two kinds of the AFDX implementation such as 
the software-based MAC and the hardware-supported MAC were 
evaluated. The hardware-supported AFDX NIC has better 
performance than the software-based one but doesn’t meet our 
own transmitter’s requirement, which is arrival within 5% 
duration of each BAG, as well. Finally, the new hardware 
proposal and further works are suggested to solve the transmitting 
problem. 

Categories and Subject Descriptors 
B.4.1 [Data Communications Devices]: Hardware 
implementation of the avionics network interface controller is 
more efficient than legacy software-based implementation. 

General Terms 
Performance, Design, Reliability, Experimentation, Verification. 

Keywords 
Avionics, AFDX, Ethernet, Redundancy, COTS, NetFPGA, NIC, 
Controller, AND, QoS, Virtual link, BAG, IEEE 802.3. 

1. INTRODUCTION 
 
As several digital computing devices had been deployed in 
aircraft, needs of inexpensive and reliable networking technology 
that interconnect these devices had been raised and then 
commercial well-verified digital data bus technology was adopted. 

Because high reliability is required when data is transmitted in an 
aircraft, various fault tolerance technologies should be applied to 
minimize or remove loss of the data. 

In the late 1990s, as Internet technologies like Ethernet, IP, TCP, 
and UDP had lead data communication field, development of 
next-generation Aircraft Data Network (ADN) with low cost and 
higher data rate, was started. As a result, the ARINC664 
specification was defined [1], [2], [3], [4]. 

The ARINC664 specification adopted Full Duplex Switched 
Ethernet technology and supported up to 100Mb/s for data 
transmission [5], [6]. 

Part 7 of the ARINC664 specification called as AFDX is based on 
Ethernet switching technology with additional fault tolerance 
functionality using two independent physical links and scheduling 
mechanism to supply bandwidth-guaranteed service. 

In this paper, first of all, we introduce the AFDX specification 
briefly and then, we propose faster hardwired AFDX network 
interface controller including block-diagram of the hardware and 
the software. In the section three, results of hardware and 
software implementation will be shown and finally the 
performance evaluation will be compared with the legacy fully 
software-based AFDX system and provide some concluding 
remarks. 

2. OVERVIEW OF THE AFDX 
 
The goal of next-generation ADN technology was taking 
advantage of commercial off-the-shelf (COTS) technology to 
minimize development time and cost, while ensuring 
compatibility with the need for reliable data transmission and 
higher data rate.  As a result, ARINC664 was defined as the 
profiled IEEE 802.3 network using TCP/IP protocol suite 
including fault tolerant redundant channels. 

The ARINC664 specification consists of several parts: 

Part 1: System concepts and overview 

Part 2: Ethernet physical and data link layer specifications 

Part 3: Internet-based protocols and services 

Part 4: Internet-based address structures and assigned numbers 

Part 5: Network interconnection services and interconnection 

Part 7: Avionics full duplex switched Ethernet network 

Part 8: Upper-layer and user services 

The AFDX technology composes the deterministic network that 
supports guaranteed bandwidth and Quality of Server (QoS) based 
on the IEEE 802.3 Ethernet technology. 

 The major aspects of AFDX are as follows: 

Full duplex switched network: the network is wired with a star 
topology and the physical interconnect medium is twisted pair, 
with separate pairs for transmit and receive channels. Each 



switch can connect up to 24 End System (ES)s. And the 
network operates at either 10 Mbps or 100 Mbps link speed. 

Each ES which uses 100 Mb/s physical links supports multiple 
virtual links like the figure 2. It is possible that several devices 
share a physical link by identifying multiple logical links with 2 
octet identification which can be configurable up to 216 virtual 
links in a physical link. The virtual link (VL) is a unidirectional 
logical link and one source node can have several destination 
nodes. Unlike legacy Ethernet switch, the AFDX switch 
multicasts received frames to multiple destination nodes that have 
same VL identification (VLID). 

Redundancy: dual networks provide a higher degree of 
reliability than a single network scheme provides. Each ES 
copies a data frame and transfers original data frame and 
copied data frame via two independent switched networks. 

Virtual Link (VL): the network separates a physical link into 
several VLs and multiplexes transferred data frames. Each VL 
is identified with Virtual Link Identification (VLID). To allocate bandwidth of each VL, following parameters are used: 
Deterministic: the network guarantees configured bandwidth 
and maximum jitter per each VL. 

Bandwidth Allocation Gap (BAG): The BAG is the interval 
between two adjacent transmitted AFDX frames like the figure 
3. The BAG value should be in range 1 ms to 128 ms. Profiled network: parameters for several ES’s are defined in 

configuration tables at switches and ES’s. Each ES and switch 
loads these configuration tables at startup and reset time to 
operate appropriately. 

These values should satisfy the following formula: 

BAG=2^k [in ms](k integer in range 0 to 7).                    (1) 

In the AFDX network, 24 ES’s can be connected on a switch with 
a star topology. The AFDX network also offers link redundancy 
functionality using two independent physical links, guaranteed 
bandwidth, and QoS functionality using traffic shaping and 
policing. 

 

LMAX: LMAX is maximum byte number that can be transmitted. 
The maximum allowed bandwidth for a given VL is defined in 
equation (2). 

 The AFDX network has two independent data paths between two 
end systems. One end system generates two same frames and 
these frames should be delivered in the same time or within a tiny 
delay through each data path. These same frames are carried 
simultaneously via two separated links like the figure 1. 

.                                                      (2) 

where: 

BWVL is the maximum allowed bandwidth for the VL in b/s. 
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LMAX is the maximum allowed frame size for the VL in bytes. 

 

Figure 1. Redundancy support. 

 
Figure 2. Virtual link. 

Figure 3. Bandwidth Allocation Gap (BAG). 
 

 
Figure 4. Jitter definition. 

 
The jitter is variation of interval between two continuously 
received frames. The jitter can occur due to network environment. 
As shown in the figure 4, the transferred frame experiences delay 
that is the interval between BAG start time and transmitting time 
of first bit of the frame. 

 



The maximum allowed jitter for a given ES is defined as follows. 
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3. IMPLEMENTATION 

3.1 Environment 
 

ecaB use the NetFPGA so
exactly not the real-time operating system, precise verification 
and performance evaluation for the AFDX transceiver function 
didn’t fully perform.  However fundamental implementation and 
evaluation are possible on the NetFPGA environment. 
The NetFPGA provides four 1GbE ports and PCI inter
and thus is able to support very efficient environment for the 
AFDX NIC development, because basically two or more Ethernet 
channels are required for redundant communication and current 
commercial AFDX NIC solution has PCI interconnection with the 
PMC form-factor. Additionally, the redundancy can easily extend 
by using spare two Ethernet channels and link speed can improve 
as well. 

3.2 Softw
 

or cF omparison against the AFDX hardware im
fully software-based AFDX function was implemented by using 
software timers and two general Ethernet transceivers. 
The figure 5 and figure 6 show the software block diagram of the 
fully software-based AFDX receiver and transmitter. Whole 
functions such as BAG timer, integrity checkers, sequence 
number checkers, VLID filtering, and redundant management was 
implemented in the software stack.  

3.3 Hardware-based impl
 

he sT everal functions were implemented in the hardware. 

Figure 5. AFDX Rx software block diagram. 

 

Figure 6. AFDX Tx software block diagram. 
 

 

Figure 7. AFDX NIC hardware block diagram. 
 most important functions such as precise BAG timers, integrity 

checkers, and redundant management were accelerated in the 
FPGA with direct connecting two Ethernet transceivers. 
 

The logic utilization summary is as follows: 
Number of Slice Flip Flops : 14,960 of 47,232 (31%) 
Number of 4 input LUTs : 18,957 of 47,232 (40%) 

T Number of RAMB16s  : 106 of 232 (45%) 
Target device  : xc2vp50-7ff1152 Number of BUFGMUXs : 8 of 16 (50%) 
Product version : ISE 10.1.03 Number of DCMs  : 6 of 8 (75%) 
Design goal  : Balanced  
Design strate y : Xilinx Def



4. RESULTS 

4.1 Traffic shaper’s jitter 
 

If there is no switched network and two end systems connects 
directly, accuracy of the BAG timer and processing delay during 
preparation of transmission are essential for traffic shaper’s jitter 
evaluation. The Ethernet analyzer is used to capture frames and 
calculates the arrival interval between adjacent frames. The table 
1 and table 2 show the jitter results according to various length of 
a frame and several BAG values for each implementation. 

The table 1 and the figure 8 show the shaping jitter of the 
transmitter of the software implementation. Most of all results 
meet our transmitter’s requirement such as a period within 5% of 
the BAG duration. However, there is an undesirable case when 
the BAG is 1ms. The maximum jitter exceeds the requirement and 
doesn’t meet it. That means that software-based implementation is 
not sufficient to support the transmitter’s requirement. 

The table 2 and figure 9 show the shaping jitter of the transmitter 
of the hardware implementation. Even though there is a little 
performance improvement, this traffic shaper’s jitter 
characteristics doesn’t meet our transmitter’s requirement. When 
the BAG is 1ms, the maximum jitter exceeds the requirement as 
well. 

This problem was caused by the hardware specification. The 
hardware was implemented like first-BAG timer expiration and 
context delivery. The timing to transfer a frame into the hardware 
was not stable because of the non-realtime Linux’s interrupt 
service routine. 

Table 1. Result of traffic shaper’s jitter (SW). 

BAG 
[ms] 

Lmax 
[bytes] 

Max. jitter 
[%] 

Avg. jitter 
[%] 

1 

64 9.22 0.84 

700 9.12 0.99 

1518 9.52 0.9 

64 

64 1.68 0.07 

700 1.63 0.08 

1518 1.64 0.08 

128 

64 0.88 0.04 

700 0.81 0.04 

1518 0.81 0.05 
 

Table 2. Result of traffic shaper’s jitter. 

BAG 
[ms] 

Lmax 
[bytes] 

Max. jitter 
[%] 

Avg. jitter
[%] 

1 

64 8.88 0.73 

700 8.98 0.84 

1518 9.18 0.81 

64 

64 0.47 0.07 

700 0.24 0.07 

1518 0.48 0.07 

128 

64 0.83 0.03 

700 0.12 0.03 

1518 0.12 0.03 
 

 
Figure 8. Graph of traffic shaper’s jitter, BAG = 1. 
 

 

Figure 9. Graph of traffic shaper’s jitter, BAG = 128. 
 

4.2 Transmission performance 
 
For evaluating transmission performance, the result, maximum 
allowable jitter according to the maximum frame length and the 
number of virtual links should be measured. 

Table 3. Result of transmission performance. 

Lmax [byte] 64 700 1518 

Num. of VLs  16 7 3 

Max. allowable jitter [us] 147.52 443.2 409.12 



Max. jitter [us] 133 691 385 

Avg. jitter [us] 113.77 349.67 359.37 

Success rate of jitter  
performance [%] 100 99.8 100 

 

Table 3 shows the result of transmission performance. Most of all 
results are delivered successfully and the figure 10 shows the 
transmitting jitters and most of jitters are smaller than the 
maximum allowable jitter represented by the red line. However, 
there are 0.2% packets which don’t be arrived at the NIC within 
the maximum allowable jitter 500us. 

This is why the interrupt service routine’s timing is not precise as 
well and this inexact timing should be caused by our software 
architecture. The file isn’t copied from the hardware buffer to the 
system memory in the kernel’s interrupt service routine but in the 
application receiving of the kernel event. This software 
architecture causes these kinds of jitter evaluation due to context 
switching delay.  

 

Figure 10. Graph of transmission performance. 
 

5. CONCLUSION AND FURTHER WORKS 
 
Two kinds of AFDX implementation were evaluated. The results 
of two models were not enough to verify the AFDX transmitter’s 
requirement. There are two problems. One is the test environment. 
The test platform is the Linux and it’s not the real-time operating 
system. The other is the software architecture that is the place to 
transfer a frame. Current system is waiting for BAG interrupts 
according to the virtual link IDs and the CPU should begin to 
copy a frame into the AFDX NIC after BAG timer expiration. 
Because these works didn’t perform in the kernel routine but in 
the application, there were context switching delays every file 
transmission. Finally, these context switching delays caused 

transmission timing to become inaccurate and thus the jitter 
characteristics were not stable. 
To fix these problems, the design of the NIC and the software 
architecture should be modified. Contexts delivery should 
perform as soon as new context is created. That means the CPU 
should copy a frame into the AFDX hardware memory on 
receiving a frame from the applications and then the hardware 
should transmit received frames already, according to each BAG 
expiration time. For better performance, more hardware logics 
should be necessary. 
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