
Implementation of the hardwired AFDX NIC
Pusik Park, Hangyun Jung

KETI
#68 Yatap, Bundang, Seongnam,

Gyeonggi, Korea
+82-31-789-{7318, 7319}
{parksik, junghg}@keti.kr

Daekyo Shin, Kitaeg Lim
KETI

#68 Yatap, Bundang, Seongnam,
Gyeonggi, Korea

+82-31-789-{7316, 7312}
{dukeshin, limkt}@keti.kr

Jongho Yoon
Korea Aerospace University

100 Hanggongdae gil,Hwajun,
Deogyang, Goyang, Gyeonggi, Korea

+82-2-789-7312
yoonch@kau.ac.kr

ABSTRACT
The ARINC 664-7 called as Avionics Full Duplex Switched
Ethernet (AFDX) deployed in modern aircrafts offers reliability
and higher bandwidth for aircraft data network (ADN). The
AFDX network system adopted the IEEE 802.3 Ethernet
technology and added some special features to compose
deterministic and fault-tolerant network. Transmitting
characteristics of two kinds of the AFDX implementation such as
the software-based MAC and the hardware-supported MAC were
evaluated. The hardware-supported AFDX NIC has better
performance than the software-based one but doesn’t meet our
own transmitter’s requirement, which is arrival within 5%
duration of each BAG, as well. Finally, the new hardware
proposal and further works are suggested to solve the transmitting
problem.

Categories and Subject Descriptors
B.4.1 [Data Communications Devices]: Hardware
implementation of the avionics network interface controller is
more efficient than legacy software-based implementation.

General Terms
Performance, Design, Reliability, Experimentation, Verification.

Keywords
Avionics, AFDX, Ethernet, Redundancy, COTS, NetFPGA, NIC,
Controller, AND, QoS, Virtual link, BAG, IEEE 802.3.

1. INTRODUCTION

As several digital computing devices had been deployed in
aircraft, needs of inexpensive and reliable networking technology
that interconnect these devices had been raised and then
commercial well-verified digital data bus technology was adopted.

Because high reliability is required when data is transmitted in an
aircraft, various fault tolerance technologies should be applied to
minimize or remove loss of the data.

In the late 1990s, as Internet technologies like Ethernet, IP, TCP,
and UDP had lead data communication field, development of
next-generation Aircraft Data Network (ADN) with low cost and
higher data rate, was started. As a result, the ARINC664
specification was defined [1], [2], [3], [4].

The ARINC664 specification adopted Full Duplex Switched
Ethernet technology and supported up to 100Mb/s for data
transmission [5], [6].

Part 7 of the ARINC664 specification called as AFDX is based on
Ethernet switching technology with additional fault tolerance
functionality using two independent physical links and scheduling
mechanism to supply bandwidth-guaranteed service.

In this paper, first of all, we introduce the AFDX specification
briefly and then, we propose faster hardwired AFDX network
interface controller including block-diagram of the hardware and
the software. In the section three, results of hardware and
software implementation will be shown and finally the
performance evaluation will be compared with the legacy fully
software-based AFDX system and provide some concluding
remarks.

2. OVERVIEW OF THE AFDX

The goal of next-generation ADN technology was taking
advantage of commercial off-the-shelf (COTS) technology to
minimize development time and cost, while ensuring
compatibility with the need for reliable data transmission and
higher data rate. As a result, ARINC664 was defined as the
profiled IEEE 802.3 network using TCP/IP protocol suite
including fault tolerant redundant channels.

The ARINC664 specification consists of several parts:

Part 1: System concepts and overview

Part 2: Ethernet physical and data link layer specifications

Part 3: Internet-based protocols and services

Part 4: Internet-based address structures and assigned numbers

Part 5: Network interconnection services and interconnection

Part 7: Avionics full duplex switched Ethernet network

Part 8: Upper-layer and user services

The AFDX technology composes the deterministic network that
supports guaranteed bandwidth and Quality of Server (QoS) based
on the IEEE 802.3 Ethernet technology.

 The major aspects of AFDX are as follows:

Full duplex switched network: the network is wired with a star
topology and the physical interconnect medium is twisted pair,
with separate pairs for transmit and receive channels. Each

switch can connect up to 24 End System (ES)s. And the
network operates at either 10 Mbps or 100 Mbps link speed.

Each ES which uses 100 Mb/s physical links supports multiple
virtual links like the figure 2. It is possible that several devices
share a physical link by identifying multiple logical links with 2
octet identification which can be configurable up to 216 virtual
links in a physical link. The virtual link (VL) is a unidirectional
logical link and one source node can have several destination
nodes. Unlike legacy Ethernet switch, the AFDX switch
multicasts received frames to multiple destination nodes that have
same VL identification (VLID).

Redundancy: dual networks provide a higher degree of
reliability than a single network scheme provides. Each ES
copies a data frame and transfers original data frame and
copied data frame via two independent switched networks.

Virtual Link (VL): the network separates a physical link into
several VLs and multiplexes transferred data frames. Each VL
is identified with Virtual Link Identification (VLID). To allocate bandwidth of each VL, following parameters are used:
Deterministic: the network guarantees configured bandwidth
and maximum jitter per each VL.

Bandwidth Allocation Gap (BAG): The BAG is the interval
between two adjacent transmitted AFDX frames like the figure
3. The BAG value should be in range 1 ms to 128 ms. Profiled network: parameters for several ES’s are defined in

configuration tables at switches and ES’s. Each ES and switch
loads these configuration tables at startup and reset time to
operate appropriately.

These values should satisfy the following formula:

BAG=2^k [in ms](k integer in range 0 to 7). (1)

In the AFDX network, 24 ES’s can be connected on a switch with
a star topology. The AFDX network also offers link redundancy
functionality using two independent physical links, guaranteed
bandwidth, and QoS functionality using traffic shaping and
policing.

LMAX: LMAX is maximum byte number that can be transmitted.
The maximum allowed bandwidth for a given VL is defined in
equation (2).

 The AFDX network has two independent data paths between two
end systems. One end system generates two same frames and
these frames should be delivered in the same time or within a tiny
delay through each data path. These same frames are carried
simultaneously via two separated links like the figure 1.

. (2)

where:

BWVL is the maximum allowed bandwidth for the VL in b/s.

AFDX network

n n+2

n n+1

Ethernet

Ethernet

AFDX Driver

IP

Integrity,
Redundancy

Check

Ethernet

Ethernet

IP

n
n+1

n+2

n+2

n+1

n+2
n+1

n

AFDX Driver

LMAX is the maximum allowed frame size for the VL in bytes.

Figure 1. Redundancy support.

Figure 2. Virtual link.

Figure 3. Bandwidth Allocation Gap (BAG).

Figure 4. Jitter definition.

The jitter is variation of interval between two continuously
received frames. The jitter can occur due to network environment.
As shown in the figure 4, the transferred frame experiences delay
that is the interval between BAG start time and transmitting time
of first bit of the frame.

The maximum allowed jitter for a given ES is defined as follows.

Redundancy ManagerINIC
A

INIC
B

VLID
Checker
Parser

Seq.
Num.

checker

Integrity check A

VL config. table

VLID
Checker
Parser

Seq.
Num.

checker

Integrity check B

Bypass

 (3)

idth in b/s.

ize for the VL in bytes.

lution is based on the Linux, which is

connection

 are-based implementation

plementation,

ementation

The

he Xilinx ISE tools configuration is as follows:

g ault

where:

m jitter is in μs. Maximu

NBW is the medium bandw

LMAX is the maximum allowed frame s

3. IMPLEMENTATION

3.1 Environment

ecaB use the NetFPGA so
exactly not the real-time operating system, precise verification
and performance evaluation for the AFDX transceiver function
didn’t fully perform. However fundamental implementation and
evaluation are possible on the NetFPGA environment.
The NetFPGA provides four 1GbE ports and PCI inter
and thus is able to support very efficient environment for the
AFDX NIC development, because basically two or more Ethernet
channels are required for redundant communication and current
commercial AFDX NIC solution has PCI interconnection with the
PMC form-factor. Additionally, the redundancy can easily extend
by using spare two Ethernet channels and link speed can improve
as well.

3.2 Softw

or cF omparison against the AFDX hardware im
fully software-based AFDX function was implemented by using
software timers and two general Ethernet transceivers.
The figure 5 and figure 6 show the software block diagram of the
fully software-based AFDX receiver and transmitter. Whole
functions such as BAG timer, integrity checkers, sequence
number checkers, VLID filtering, and redundant management was
implemented in the software stack.

3.3 Hardware-based impl

he sT everal functions were implemented in the hardware.

Figure 5. AFDX Rx software block diagram.

Figure 6. AFDX Tx software block diagram.

Figure 7. AFDX NIC hardware block diagram.
 most important functions such as precise BAG timers, integrity

checkers, and redundant management were accelerated in the
FPGA with direct connecting two Ethernet transceivers.

The logic utilization summary is as follows:
Number of Slice Flip Flops : 14,960 of 47,232 (31%)
Number of 4 input LUTs : 18,957 of 47,232 (40%)

T Number of RAMB16s : 106 of 232 (45%)
Target device : xc2vp50-7ff1152 Number of BUFGMUXs : 8 of 16 (50%)
Product version : ISE 10.1.03 Number of DCMs : 6 of 8 (75%)
Design goal : Balanced
Design strate y : Xilinx Def

4. RESULTS

4.1 Traffic shaper’s jitter

If there is no switched network and two end systems connects
directly, accuracy of the BAG timer and processing delay during
preparation of transmission are essential for traffic shaper’s jitter
evaluation. The Ethernet analyzer is used to capture frames and
calculates the arrival interval between adjacent frames. The table
1 and table 2 show the jitter results according to various length of
a frame and several BAG values for each implementation.

The table 1 and the figure 8 show the shaping jitter of the
transmitter of the software implementation. Most of all results
meet our transmitter’s requirement such as a period within 5% of
the BAG duration. However, there is an undesirable case when
the BAG is 1ms. The maximum jitter exceeds the requirement and
doesn’t meet it. That means that software-based implementation is
not sufficient to support the transmitter’s requirement.

The table 2 and figure 9 show the shaping jitter of the transmitter
of the hardware implementation. Even though there is a little
performance improvement, this traffic shaper’s jitter
characteristics doesn’t meet our transmitter’s requirement. When
the BAG is 1ms, the maximum jitter exceeds the requirement as
well.

This problem was caused by the hardware specification. The
hardware was implemented like first-BAG timer expiration and
context delivery. The timing to transfer a frame into the hardware
was not stable because of the non-realtime Linux’s interrupt
service routine.

Table 1. Result of traffic shaper’s jitter (SW).

BAG
[ms]

Lmax
[bytes]

Max. jitter
[%]

Avg. jitter
[%]

1

64 9.22 0.84

700 9.12 0.99

1518 9.52 0.9

64

64 1.68 0.07

700 1.63 0.08

1518 1.64 0.08

128

64 0.88 0.04

700 0.81 0.04

1518 0.81 0.05

Table 2. Result of traffic shaper’s jitter.

BAG
[ms]

Lmax
[bytes]

Max. jitter
[%]

Avg. jitter
[%]

1

64 8.88 0.73

700 8.98 0.84

1518 9.18 0.81

64

64 0.47 0.07

700 0.24 0.07

1518 0.48 0.07

128

64 0.83 0.03

700 0.12 0.03

1518 0.12 0.03

Figure 8. Graph of traffic shaper’s jitter, BAG = 1.

Figure 9. Graph of traffic shaper’s jitter, BAG = 128.

4.2 Transmission performance

For evaluating transmission performance, the result, maximum
allowable jitter according to the maximum frame length and the
number of virtual links should be measured.

Table 3. Result of transmission performance.

Lmax [byte] 64 700 1518

Num. of VLs 16 7 3

Max. allowable jitter [us] 147.52 443.2 409.12

Max. jitter [us] 133 691 385

Avg. jitter [us] 113.77 349.67 359.37

Success rate of jitter
performance [%] 100 99.8 100

Table 3 shows the result of transmission performance. Most of all
results are delivered successfully and the figure 10 shows the
transmitting jitters and most of jitters are smaller than the
maximum allowable jitter represented by the red line. However,
there are 0.2% packets which don’t be arrived at the NIC within
the maximum allowable jitter 500us.

This is why the interrupt service routine’s timing is not precise as
well and this inexact timing should be caused by our software
architecture. The file isn’t copied from the hardware buffer to the
system memory in the kernel’s interrupt service routine but in the
application receiving of the kernel event. This software
architecture causes these kinds of jitter evaluation due to context
switching delay.

Figure 10. Graph of transmission performance.

5. CONCLUSION AND FURTHER WORKS

Two kinds of AFDX implementation were evaluated. The results
of two models were not enough to verify the AFDX transmitter’s
requirement. There are two problems. One is the test environment.
The test platform is the Linux and it’s not the real-time operating
system. The other is the software architecture that is the place to
transfer a frame. Current system is waiting for BAG interrupts
according to the virtual link IDs and the CPU should begin to
copy a frame into the AFDX NIC after BAG timer expiration.
Because these works didn’t perform in the kernel routine but in
the application, there were context switching delays every file
transmission. Finally, these context switching delays caused

transmission timing to become inaccurate and thus the jitter
characteristics were not stable.
To fix these problems, the design of the NIC and the software
architecture should be modified. Contexts delivery should
perform as soon as new context is created. That means the CPU
should copy a frame into the AFDX hardware memory on
receiving a frame from the applications and then the hardware
should transmit received frames already, according to each BAG
expiration time. For better performance, more hardware logics
should be necessary.

6. REFERENCES

[1] ARINC 664 Standard, 2002, Aircraft Data Network.
[2] ARINC 664 Part 1 Standard, 2002, Aircraft Data Network

Part 1 : System Concepts and Overview.
[3] ARINC 664 Part 2 Standard, 2002, Aircraft Data Network

Part 2 : Ethernet Physical and Data Link Layer Specification.
[4] ARINC 664 Part 7 Standard, 2005, Aircraft Data Network

Part 7 : Avionics Full Duplex Switched Ethernet (AFDX)
Network.

[5] IEEE 802.3 Standard, 2005, IEEE Standard for Local and
Metropolitan Area Network, Part 3 : Carrier sense multiple
access with Collision Detection (CSMA/CD) access method
and physical layer specification.

[6] IEEE 802.1D, Local and Metropolitan Area Network : Media
Access Control Level Bridging.

[7] NetFPGA project, http://netfpga.org
[8] Charara, H., Fraboul, C., 2005, Modelling and Simulation of

an Avionics Full Duplex Switched Ethernet, In the
Proceedings of the Advanced Industrial Conference on
Telecommunications/Service Assurance with Partial and
Intermittent Resources Conference/E-Learning on
Telecommunications Workshop, (Lisbon, Portugal, July 17-
22, 2005), AICT/SAPIR/ELETE’05, 207-212.

[9] Anand, M., Vestal, S., Dajani-Brown, S., Lee, I., 2006,
Formal Modeling and Analysis of the AFDX Frame
Management Design, In Proceedings of the Ninth IEEE
International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (Gyeongju,
Korea, April 24-26, 2006), ISORC’06, 393-399.

[10] Chen, X., Yin, H., Zhou, Y., Wan, J., 2008, An Effective
Framework for Delay Control in Hard Real-Time Switched
Networks, In the Proceedings of the 10th IEEE International
Conference on High Performance Computing and
Communications, (Sep. 25-27, 2008), 736-743.

[11] Chen, X., Xiang, X., Wan, J., 2009, A Software
Implementation of AFDX End System, In the Proceedings of
the International Conference on New Trends in Information
and Service Science, (Beijing, China, June 30-July 02,
2009), 558-563.

	1. INTRODUCTION
	2. OVERVIEW OF THE AFDX
	3. IMPLEMENTATION
	3.1 Environment
	3.2 Software-based implementation
	3.3 Hardware-based implementation

	4. RESULTS
	4.1 Traffic shaper’s jitter
	4.2 Transmission performance

	5. CONCLUSION AND FURTHER WORKS
	6. REFERENCES

