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ABSTRACT
Sketch-based algorithms are widely applied in various net-
working applications. In this paper, we present a com-
pact implementation for on-line traffic change detection on
a NetFPGA platform. The system utilizes a straight for-
ward scheme to reveal the key of flow with tradeoff on the
accuracy for hardware simplicity. It is capable of digesting
traffic up to 4Gbps line rate with accuracy needed based on
the available memory on-board.

Categories and Subject Descriptors
C.2.1 [Computer-Communications Network]: Network
Architecture and Design

Keywords
Data Stream, Sketch, Change Detection, NetFPGA

1. INTRODUCTION
Monitoring and identifying abnormal behaviors in net-

work traffic are important tasks for network security. As
network bandwidth grows exponentially, the scaling of mon-
itoring and measuring capabilities for collecting accurate
statistics becomes a critical issue [17]. The challenge we
are facing is to process a potentially unlimited amount of
data in a limited time and space. In addition, each element
or record of the data stream might have only one chance to
be examined.

In this work, we focus on one of the interesting behav-
iors: monitoring the presence of abrupt changes in network
traffic. Internet traffic can be naturally regarded as a data
stream since packet data arrives rapidly as a series of ele-
ments. Abrupt changes in network traffic pattern might in-
dicate anomalies or malicious activities, such as port scan or
denial of service (DoS) attacks [11]. This phenomena is also
known as heavy changer. It is a network flow whose change
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in traffic volume between two monitoring interval exceeds
a predefined threshold [5]. A network flow can be defined
as a stream of packets with some common attributes. For
example, it can be packets having the same pair of source
and destination IP address, or packets consist of the same
5-tuple attributes: the source and destination IP address,
the source and destination port, and the protocol number.

Based on the sketch algorithm proposed by Krishnamurthy
et al. [20], we demonstrate a system which is capable of de-
tecting changes of flow volume in on-line fashion at wire
speed on NetFPGA reference platform. The remainder of
the paper is organized as follows. In Section 2, we first in-
troduce some general backgrounds of sketch algorithm and
universal hash function. The system architecture and imple-
mentation details are described in Section 3. Experiments
are conducted with discussions presented in Section 4. We
also provide the related work in Section 5. Finally, we con-
clude the paper with future work in Section 6.

2. BACKGROUND
A data stream φ = (a1, a2, ...) is a massive sequence of

elements. Each element, at = (kt, ut) consists of a key, kt

and an update, ut. The key kt in the data stream model can
be used to represent the traffic flow. Typically, sampling
[15, 16] is a popular method applied to tackle the processing
and storage cost incurred by the huge amount of traffic.
Sketch is another interesting approach as it offers low space
requirement and guaranteed accuracy.

2.1 Sketch Algorithm
Sketch [7, 2, 25] is a powerful yet compact data structure

capable of synopsizing substantial numbers of data elements
without keeping its stateful information. The sketch algo-
rithms rely on the probabilistic property of universal class
of hash functions [6] to guarantee its accurate estimation
on various attributes of the data streams. Therefore, it is
widely used in many high-speed network applications [11,
14, 22, 5, 4, 20].

Take the K-ary [21] sketch S(t) for example, it utilizes
a two-dimensional array of counters C[i][j], where 0 ≤ i <
H, 0 ≤ j < K. The parameter H represents the number
of arrays and K is the number of entries within each array.
The two-dimensional array of counters is indexed by a set
of 4-Universal hash functions H = {hi, 0 ≤ i < H}. Each
hash function hi maps a key k ∈ {0, 1, · · · , n − 1} into the
hashing space of {0, 1, · · · , K − 1}.



Initially, all the counters are set to zero. As each element
at = (kt, ut) of the data stream arrives, the key kt is hashed
by the set of H hash functions. Then, the value of ut is added
to the set of counters indexed by the H hash outcomes, as
illustrated in Equation (1).

C [i] [hi (kt)] = C [i] [hi (kt)] + ut, ∀i ∈ [H ] (1)

The sketch data structure S(t) contains the final accumu-
lated values in these counters within a specific observation
interval �T . A query can be conducted to estimate a specific
attribute on the data stream based on the sketch collected.
We refer to the original work[21] for more details.

Due to its linearity, we can also combine several sketches
together for query processing. A detailed analysis and com-
parison of various sketch algorithms can be found in Cor-
mode’s survey [9, 8].

2.2 Universal Hash Function
Carter and Wegman first described the idea of a universal

class of hash functions [6] in 1979. The universal class of
hash functions is a family of hash functions with a special
randomized property. Given two keys, the probability of
hashing these two keys into a same value is bounded as long
as the function is randomly selected from the family. The
family of 2-universal hash functions has the collision proba-
bility specified in a pairwise independent manner. That is,
for all x �= y ∈ U and s, t ∈ B, P h∈H [h(x) = s, h(y) = t] =
1

R2 .
The universal class of hash functions can be generalized

as k -universal defined in Equation 2, where x < p and p
is a prime number. The parameter ai is selected randomly
where 0 < ai < p.

h(x) =

k−1∑
i=0

((aix
i) mod p) mod m (2)

P h∈H[h(xi) = vi] =
1

mk
, where vi ∈ [m], i ∈ (0, 1, · · · , k − 1)

In general, the prime number, p is chosen to be a Mersenne
prime such as 231 − 1, 261 − 1 or 289 − 1 to avoid the long
latency of division computation.

The tabulation method is another popular way suitable
for hardware implementation [29]. For example, in order to
hash a n-byte string of x0x1 · · ·xn−1, we need a 256×n 2-D
array at. Each single column consists of 256 pre-calculated
hash values by using a hash function randomly drawn from
a 2 -universal hash family. The whole table is indexed by
each byte value of xi and position of i in the string. The
hash process, shown in Equation 3, is done by XORing a
sequence of values at[xi][i], where i ∈ (0, 1, · · · , n − 1).

htab(x0x1 · · ·xn−1) =

a[x0][0] ⊕ at[x1][1] ⊕ · · · ⊕ at[xn−1][n − 1] (3)

Thorup and Zhang [32] proposed a tabulation method for
4-universal hash function. For a given 32-bit key k, it is
divided into two 16-bit subkeys, a and b. Three 4-universal
hash functions h0, h1, and h2 are precomputed and tabu-
lated. The hash process can be proceeded by table lookup
on the two subkeys and exclusive-or operation shown as fol-
lows: h [k] = h0 [a] ⊕ h1 [b] ⊕ h2 [a + b].

3. IMPLEMENTATION
Based on the detection scheme proposed by Krishnamurty

et al. [20], the system is designed to be a network probe with
four observation points [1] for IP traffic. The architecture
is partitioned into two major parts, denoted as NetFPGA
hardware and system software.

The NetFPGA hardware consists of a sketch module which
is placed behind the Input Arbiter in the NetFPGA refer-
ence pipeline. The data structure, known as the Observed
Sketch So (t), is stored in the NetFPGA on-board SRAM to
record the update value during the observing time interval.

The system software, executed on host computer side, is
in charged of performing statistical operations based on the
Observed Sketch So (t). A series of Forecast Sketch Sf (t),
Forecast Error Sketch Se (t) and threshold TA are computed
at the end of each observing time interval �T . A typical
observing time interval can be ranging from 60 seconds to
300 seconds.

The system achieves on-line, one-pass detection by uti-
lizing the current incoming key to query the previous Fore-
cast Error Sketch Se (t) on the NetFPGA hardware. If the
query result is higher than the threshold TA, a significant
change for that given flow is found. The corresponding key
is recorded and alarm raised.

3.1 Sketch Module
The sketch update datapath is the critical bottleneck for

system operation since the process has to be done in timely
manner for each new frame arrived. The user datapath
(UDP) consists of 64-bit data bus operated in clock fre-
quency of 125Mhz. Therefore, the system has to process
the sketch update for every Tframe = 21 clock cycles. This
is assuming a worst-case scenario of 4-port inbound network
traffic of minimum-sized Ethernet frame with inter-frame
gap and preamble of 96 and 64 bit time respectively. The
detailed block diagram of Sketch module is shown in Figure
2. It consists of a FIFO buffer and blocks of hash func-
tion pipeline. Upon arrival of a frame, both of the source
IP address and packet length are extracted from the header.
They are kept in the FIFO buffer to hide the latency of hash
calculation.

The system consists of three sets of standalone hash func-
tion (H = 3). The hashed values are used as indexes for
updating the observed sketch data structure in SRAM. For
each time interval �T , an observed sketch So (t), is created
and recorded in a ping-pong fashion. As shown in the Figure
2, the system maintains two observed sketch data structures
in the SRAM. While the current observed sketch So (t2) is
being updated, the other sketch So (t1) of the previous time
interval can be retrieved by the host via PCI bus. Besides,
the hashed values are used to query the error sketch Se (t)
produced from the host processor. The purpose is to de-
tect the abrupt change in real-time and record the key in
one-pass fashion. The details will be explained in the next
section.

3.2 System Software
At the end of each time interval �T , the observed sketch

So (t) are moved to the host through PCI bus. The host
processor keeps all the sketch data structures to compute
the forecast sketch Sf (t) by using desired smoothing model
with window size W . The processes are indicated at the
steps (2) and (3) shown in Figure 1.



Figure 1: System operations

Figure 2: The datapath of Sketch Update module

Sf (t) =

∑W
i=1 Sf (t − i)

W
, W ≥ 1 (4)

We use the simple smoothing model: Moving Average
(MA) to compute the Forecasting Sketch Sf (t). The Error
Sketch is constructed by subtracting the Forecasting Sketch
Sf (t) with the current Observing Sketch So (t) shown in the
equation as follows: Se (t) = Sf (t) − So (t) . The host pro-
cessor further calculates two sets of sketch array:
(1)ESTIMATE(Se (t)) and (2)ESTIMATEF2(Se (t)) shown
in the Equation (5) and (7) respectively.

ESTIMATE(Se (t)) =


K

K − 1
CSe[i][j] − 1

K − 1

∑
j∈[k]

CSe[0][j]


 (5)

F hi
2 (Se (t)) =

K

K − 1

∑
j∈[k]

(CSe[i][j])
2 − 1

K − 1

∑
j∈[k]

(CSe[0][j])
2 (6)

F estimate
2 = mediani∈[H]

{
F hi

2

}
(7)

The alarm threshold for each observing time period, TA is
obtained based on the square root of the estimated second
moment F2(Se (t)) times a predetermined parameter T .

TA = T.
[
F estimate

2 (Se (t))
] 1

2
(8)

In order to perform fast on-line query on each incoming
frame, the value of alarm threshold TA is kept in the hard-
ware register. The estimated Error Sketch ESTIMATE Se (t)
is also stored in the SRAM.

For each key, the query is conducted against the estimated
Error Sketch in hardware. The query result, representing
the magnitude of change, is compared with the threshold
TA. If this value is above TA, the alarm is raised with the
key recorded in the key table. The table will be passed to
the host processor at the end of time epoch. The processes
are illustrated at step (5) and (6) shown in Figure 1.

4. EXPERIMENTS AND DISCUSSIONS
The quality of hash function plays an important role on

the estimation accuracy. In order to compare the latency
and resource utilization on NetFPGA platform, we imple-
ment two different types of hash function: the 2-Universal
and 4-Universal. The implementation further includes the
tabulation and pipelined multiplier schemes, illustrated in
Equation (2) and (3).

Shown in Table 3, we can see there is a difference of
about 20% on the slices and 4-Input LUTs utilization for 2-
Universal and 4-Universal tabulation implementation. This
is mainly due to three precomputed tables for 4-Universal
hash lookup. The multiplier implementation utilizes the
CW-trick [6] with embedded multipliers provided on the
Virtex-II Pro FPGA in pipelined fashion. The hash pipeline
is capable of processing a 32-bit key on each UDP clock cy-
cle with total hashing latency approximately 4 times longer
than that of the tabulation counterpart.

We first verify the NetFPGA hardware for line-rate sketch
update by sending frames generated from a 4-Port 1000-
BaseT Gigabit module hosted on the IXIA 1600 Traffic Gen-
erator chassis. We observed 0.16% packet lost under the
stress test with 4Gbps minimum-sized frame.



Trace-driven experiments are also conducted based on the
network traces from MAWI Working Group Traffic Archive
[23]. The first 15-minute trace consists 51,778 flows of dis-
tinct source IP addresses. It’s part of a 24-hour-long trace in
a trans-Pacific line (18Mbps CAR on 100Mbps link) [24] col-
lected at MAWI’s samplepoint-B. Another 15-minute trace
(200904022100.dump) file is adopted from a 150Mbps link at
MAWI’s samplepoint-F. It consists 286,369 flows of distinct
source IP addresses.

The system under test is configured with three hash func-
tions (H=3) and three sets of 4096-entry (K=4k) of sketch
table. Each entry is a 32-bit counter. Thus, the total size
of the sketch data structure is 48k bytes. Each of the sketch
table can be scale up to 32k entries (K=32k) depend on the
accuracy required.

The observing time period is sixty seconds (�T = 60)
with moving average window size of three (W = 3). Traces
are replayed by tcpreplay-3.4.4 [33] through Intel Pro-1000MT
dual-port server adapter. The results are verified with our
simulator.

We build a simple web-based interface showing top 10
flows and displaying a list of IPs which is detected over the
predefined threshold. This interface, shown in Figure 3, is
built using PHP and Javascript. Pages are reloaded every
observing interval automatically.

Despite the small sketch size and number of hash func-
tions, the system can successfully identify several source
IP addresses whose change is greater than the predefined
threshold (T fraction of the L2 norm of the error sketch). We
present some of the identified flows (at the bottom marked
with IP and time interval) against the total traffic volume
(top) in Figure 4.

One main issue in the sketch-based methods is that we
have to identify the keys with significant change. Cormode
and Muthukrishnan [12] proposed a scheme based on group
testing to find items that have large difference (deltoids)
in high-speed network traffic. The data structure can be
viewed as an extension to k-ary sketch with multiple coun-
ters in each hash table. Based on the implementation [12],
the memory requirement is between 500 Kb to 3 Mb per
stream collection (group).

Another approach is the reversible sketch scheme pro-
posed by Schweller et al. [30]. With parameters of (H=6,
K=64k) and (H=6, K=4k), the scheme requires memory
sizes of 3 MB and 192 KB, respectively, to support the IP
mangling and modular hashing operation.

The way we uncover the original key of the flow is to query
the error sketch of the previous observing interval and com-

Figure 3: The User Interface

Figure 4: Selected source IP addresses above the
threshold for various threshold T. The observing
time period is 60 seconds with window size of three
(W=3).

pare the threshold TA on the arrival of each new frame. The
system consumes only 48KB of memory in total for sketch
data structure (H=3, K=4k). By comparing to the schemes
proposed by reversible sketch [30] and combinatorial group
testing [10], its simplicity is much attractive and manage-
able for hardware implementation under limited resources.
Therefore, we are interested in the tradeoff where extra com-
promise in accuracy might occur. Figure 5 shows the sim-
ulation results on the false-positive and false-negative rate
based on the scheme we adopt. The false negative error rate
is slightly higher than the false positive rate. It’s because the
key of the flow, which is updated in the previous time epoch,
does not show up again at the current observing interval.

Figure 5: False positive and false negative error rate.

5. RELATED WORK
The original implementation provided by Krishnamurthy

et al. [20] is a software-based design for off-line operation.
With configuration of H = 5 and K = 64K, the running
time for processing 10 million hash computations is 0.45
second on a 900Mhz Ultrasparc-III running Solaris 5.8 op-
erating system. Schweller et al. [30, 31] later presented a
change detection system based on a reversible k-ary sketch
scheme. The objective of the reverse hashing is to infer the
key of flows from the sketch. The system is implemented
in hardware development board using three Xilinx Virtex



Table 1: FPGA utilization. (pipelined 4-Universal
hash functions, H=3, K=32k)

Resources Utilization Percentage

Slice Registers 22,687 out of 47,232 48%
4 input LUTs 20,433 out of 47,232 43%

Occupied Slices 16,671 out of 23,616 70%
RAMB16s 144 out of 232 62%

MULT18X18s 72 out of 232 31%
IOBs 356 out of 692 51%

Table 2: System accuracy with various threshold
parameter T. (pipelined 4-Universal hash functions,
H=3, K=32k)

T 0.8 0.6 0.4 0.2 0.1 0.05 0.02

False Positive 0 0 0 0 0 0.005 0.008
False Negative 0 0 0 0.05 0.11 0.14 0.17

2000E FPGAs and hosted in a Solaris Ultra-10 workstation.
With 2-Universal hash functions and key of 32-bit IP ad-
dress, the hardware (H = 5, K = 4k) can achieve through-
put of 16.1Gbps with modular hashing and IP mangling for
40-byte IP packets.

A substantial change detection literature [12, 19, 26] relies
on the advantage of the sketch-based algorithm to summa-
rize the high-dimensional nature of network data stream.
Therefore, it’s widely used in many network security related
applications and intrusion detection systems to figure out
many aspects of a network traffic’s behavior in addition to
the signature-based detection scheme [13]. Nguyen et al.
proposed an FPGA-based feature extraction module for net-
work flow monitoring [27]. The estimate procedure of the
sketch is similar to that of Count-Min [9] sketch. The sys-
tem was implemented based on Xilinx Virtex-II XC2V1000
and tested with various combination of H and K value. The
system achieves throughput of 21.25 Gbps and accuracy of
97.61% with configuration of H = 4 and K = 16k. Pati et
al. [28] proposed the same architecture as that in [27]. The
system utilizing the sketch based on Bob Jenkins’ 32-bit
hash function, was implemented on a Xilinx ML310 board
which contains VirtexII-Pro XC2VP30 FPGA. Their exper-
iment run in off-line mode with throughput of 3 Gbps using
the same range of H and K in [27]. Barman et al. proposed
sketch-based techniques to detect attacks in routers [3]. The
techniques are based on change detection and leverage the
accurate estimation provided by Count-Min[9] and FM [18]
sketches. No hardware implementation is presented in the
paper.

6. CONCLUSION AND FUTURE WORK
This paper presents an implementation of on-line network

traffic change detection system on a NetFPGA platform.
Several different universal hash functions are implemented
for comparison on latency and hardware resource consump-
tion. The device resource utilization of the design (H=3,
K=32k) is shown in Table 1. We stress the system by
the IXIA traffic generator. The system hardware is capa-
ble of detecting the significant change of network traffic up
to 4Gbps line rate with low error rate. Trace driven ex-
periments are conducted and verified with the simulation

results, shown in Table 2.
We aim for further optimizing the system and integrating

with a router or switch design where actions can be pro-
ceeded with the detections. The design can also include
functions such as adjusting observing epoch dynamically for
fast response and sending out observing sketch to a cen-
tralized analyzer where linear sketch processing can be con-
ducted for global awareness of networking traffic.
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