
Implementation of a Programmable Service
Composition Network using NetFPGA-based

OpenFlow Switches

Seok Hong Min*, Yoon Cheol Choi*, Namgon Kim**, Wan Kim***, Oh Chan Kwon***, Byung Chul Kim *,
Jae Yong Lee*, Dae Young Kim*, Jongwon Kim**, Hwhangjun Song***

*Dept. of Infocomm Eng., Chungnam National University, Daejeon, 305-764, Korea
{minsh, cyc79i, byckim, jyl, dykim}@cnu.ac.kr

**Dept. of Info. and Comm. Gwangju Institute of Science and Technology (GIST) Gwangju, 500-712, Korea
{ngkim, jongwon}@nm.gist.ac.kr

***Dept. of Computer Science and Engineering, POSTECH, Pohang, 790-784, Korea
{xviii, ochanism, hwangjun}@postech.ac.kr

Abstract— Future Internet testbed project called FiRST has been
started in Korea, where separated testbeds consisting of
NetFPGA-based OpenFlow switches are connected to Korea
research networks. This testbed will be used for researchers for
testing new ideas and innovative protocols of Future Internet. To
interconnect separated testbeds, user’s layer 2 frames from one
local testbed should be encapsulated at the sending OpenFlow
switch and tunneled to the destination OpenFlow switch. In this
project, we implemented NetFPGA-based OpenFlow Capsulator
module and tested its performance. This hardware Capsulator
shows enhanced performance compared to the user-level
software Capsulator. On the given testbed network, we deployed
programmable service composition and QoS routing function at
the OpenFlow controller based on user requirements and
network status. According to the QoS routing algorithm, optimal
routing path can be calculated using service requirements table
and network monitoring components. We believe that our
suggested controller application can be effectively used for
providing dynamic service composition and guaranteed video
streaming services.

Keywords- Future Internet, NetFPGA, OpenFlow, Dynamic
Service Composition, QoS routing

I. INTRODUCTION
Future Internet has been a major issue for several years to

enhance current Internet and support upcoming future
applications. There are a number of interesting researches such
as GENI [1], FP7 FIRE [2] and NwGN [3]. These are mainly
focused on future Internet architecture and related testbeds to
evaluate new protocols. Future Internet testbed requires some
advanced concept, such as programmability, virtualization,
end-to-end slice, federation, and network resource management.
Virtualized programmable testbed makes it easy for researchers
to apply new ideas or innovative new protocols.

A large-scale testbed project in Korea is named
FiRST(Future Internet Research for Sustainable Testbed)[4], in
which platforms based on NetFPGA-based OpenFlow switches
are deployed and new service operation and control framework
on dynamic virtualized slices is applied. We deployed four
separated testbeds consisting of NetFPGA-based OpenFlow

switches and connect these testbed to KOREN (Korea
Advanced Research Network) [5].

To make an overlay network on the KOREN, user’s layer 2
frames from one local testbed should be encapsulated at the
sending OpenFlow switch and tunneled to the destination
OpenFlow switch. To do this, we implemented NetFPGA-
based Capsulator module and tested its performance. This
Capsulator shows enhanced performance compared to the user-
level software Capsulator.

On the given testbed networks, we deployed programmable
service composition network and applied QoS routing based on
user requirements and network status. QoS routing algorithm
can calculate optimal routing path using service requirements
table and network monitoring components. According to our
service scenario, a user sends service requirements to
OpenFlow controller first and records them in the table. Later,
when a new packet arrives at the OpenFlow switch, it is
forwarded to the controller. The controller examines the packet
and applies QoS routing algorithm based on the service
requirement and network conditions such as available
bandwidth or network congestion status. OpenFlow controller
inserts forwarding entries in the switch and afterwards packets
will be processed according to the forwarding table. This table
will be changed by OpenFlow controller whenever topology or
network status changes.

We’ll first introduce basic concept of NetFPGA module
and OpenFlow protocol. After that, we’ll explain testbed
architecture and QoS routing control framework. Lastly, we’ll
show the implemented NetFPGA-based hardware Capsulator
module and its performance.

II. RELATED WORK
In this Section, we first introduce NetFPGA platform and

OpenFlow protocol. Then, we explain service composition
related research activities.

A. NetFPGA Platform
The NetFPGA platform is a network hardware accelerator

that can handle packet processing at line rate without CPU
participation. The gateware of the NetFPGA is designed in a
modular fashion to allow users to modify or reconfigure
modules to implement other useful devices. Fig. 1 shows the
NetFPGA pipeline which consists of eight receive queues,
eight transmit queues, and user data path which includes input
arbiter, output port lookup and output queues [6].

We can develop and add our modules to the user data path
appropriately. The register interface allows software programs
running on the host to exchange data with hardware module.

Figure 1. NetFPGA Reference Pipeline

B. OpenFlow Switch
OpenFlow provides an open protocol to program the flow

table in various switches and routers. OpenFlow controller can
add or delete forwarding entries in the switch, so packets are
forwarded according to the centralized controller’s decision.
The OpenFlow switch classifies packets into flows based on
10-tuple to find the appropriate actions associated with the flow.
An OpenFlow switch consists of a Flow Table, Secure Channel
to the remote controller and OpenFlow protocol [7].

All the intelligence of network traffic control resides in the
controller and dedicated OpenFlow switch is a dumb datapath
element that forwards between ports as ordered by the
controller. Experimenters might control the complete network
of OpenFlow switches and run multiple independent
experiments on different sets of flows.

C. Service Composition
Service composition is a way of building a new application

by composing existing component services. It allows efficient
provisioning and improved reusability of components in
building applications. Although service composition was a
concept originally researched in the Web community, today it
is utilized by a variety of communities. Multimedia community
builds large scale multimedia systems via service composition
[8]. In networking community, new networking architectures
are introduced which composes network functions to form new
protocols and services [9]. RBA [10] and SILO [11] organize
communications by composing functional blocks. Also,
Ganapathy et al. [12] encompass functions that are typically
placed on end-systems and on routers.

III. NETFPGA/OPENFLOW-BASED PROGRAMMABLE
NETWORK

In this section, we explain NetFPGA/OpenFlow-based
programmable network architecture and implemented
functional elements in detail. They are GUI for network and
flow visualization, QoS routing control module and NetFPGA-
based hardware-accelerated Capsulator.

Figure 2. Overall testbed architecture

A. Overall Architecture
Network substrate consists of interconnections between

NetFPGA/OpenFlow switches as shown in Fig. 2. If users
sends networking requirements, OpenFlow controller builds
programmable network using network programmability
functions to satisfy those requirements. Programmable network
can be provided by composing flow’s route dynamically. For
example, packets can be routed via designated node for a
specific service or light loaded path based on their priority. The
way for providing programmable network is to make minimum
spanning tree between all the OpenFlow switches, to make a
tree for satisfying the QoS metrics, or to make traffic route
manually by user’s control over the network resources. To
make an overlay network on the KOREN, tunneling between
OpenFlow switches are implemented by using NetFPGA-based
Capsulator.

B. GUI for Network and Flow Visualization
To visualize flows over the OpenFlow network connection

and to control the flow’s path manually, we implemented GUI
on the OpenFlow controller by extending ENVI.

C. QoS Routing Control Framwork
QoS routing control framework is an essential part to

provide an experimental environment that guarantees QoS for
experimenters in Future Internet testbed. When the
experimenter performs service composition experiment on
OpenFlow testbed, the experimenter may request a slice with

service requirement such as bandwidth, delay and computing
power. As a result, the slice can be consist of nodes that have
an ability to perform service composition, and the slices can
work independently each other. Thus, service requirement can
be sufficiently satisfied during total service time, and then the
routing path with satisfying the service requirement is
dynamically computed.

The proposed QoS routing control framework is illustrated
in Fig. 3. QoS routing control framework can be divided into
four components: ENVI, LAVI, Network monitoring
component and QoS routing component. ENVI (Extensible
network visualization & control framework) [13] is developed
to visualize OpenFlow network situation. The experimenter is
able to check the status of link connection on its own slice via
ENVI in real time. LAVI which is one of NOX components
plays a role as a backend server of ENVI. ENVI and LAVI
exchange OpenFlow network information through secure
channel. ENVI sends service requirements to LAVI in NOX
controller, and then LAVI delivers this information to QoS
routing component. Network monitoring component observes
network conditions such as available bandwidth, link delay,
packet loss and queue status of each OpenFlow switch in real
time, and then sends this information to QoS routing
component periodically. QoS routing component dynamically
computes the optimal routing path based on both service
requirements by experimenter and network conditions of all
OpenFlow switches. In other words, QoS routing component
finds routing path to satisfy service requirement of all slices
under time-varying network condition, and then updates flow
table of corresponding OpenFlow switch by QoS routing
information.

Figure 3. QoS routing control framework

D. NetFPGA-based hardware-accerelated Capsulator
We deployed separated local testbeds at four sites(Seoul,

Daejeon, Gwangju, Pohang) using NetFPGA-based OpenFlow
switches and applied tunneling scheme to forward OpenFlow
frames intact from one OpenFlow site to another OpenFlow
site through the KOREN because there are no OpenFlow aware
nodes now in the KOREN. We implemented NetFPGA-based
Capsulator for high throughput MAC-in-IP encapsulation.

Since user data path between hardware logics is 64-bits
wide running, we made 64-bits IP encapsulation header format
as shown in Fig. 4. Source (destination) IP address is set as
transmitting (receiving) capsulator’s IP address. The easiest
way to get a MAC address of gateway which is connected to
OpenFlow switch is to set register manually using CLI
(Command Line Interface). But, it cannot support automatic
and dynamic topology configuration because user has to input
MAC address information whenever topology changes. To
support automatic MAC address table construction, we
implemented new application using shell script and JAVA-
based GUI as follows. For this, NetFPGA-based OpenFlow
switch is connected to the same gateway from both NIC and
NetFPGA cards as shown in Fig. 5 and kernel-level ARP table
is used as follows.

(1) Obtain gateway MAC address by looking up ARP
table of kernel-level OS.

(2) Fill the register of NetFPGA-based OpenFlow switch
using obtained gateway MAC address and user-input
network information

(3) Download OpenFlow_capsulator bit file and load
OpenFlow kernel module using insmode command.

(4) Run script for OpenFlow switch operation.

Also, for proper ARP operation, if the ARP request frame is
received at the Capsulator from gateway on KOREN, it should
be delivered to the OS kernel or processed in the NetFPGA
module internally. Currently, kernel-level OS ARP operation
cannot be supported, so we implemented internal ARP
processing logic in the NetFPGA as follows.

(1) Using register interface, enter MAC and IP address of
Capsulator for ARP reply.

(2) After monitoring an entered frame at the Capsulator’s
port, check if it is an ARP request or not by comparing
MAC frame type and destination. If it is an ARP
request, activate arp flag and record MAC and IP
address.

(3) If the arp flag is set to 1, ARP reply frame is made
using an entered MAC and IP information and
transmitted to the Capsulator port.

Figure 4. Encapsulation header format

Figure 5. User data path of NetFPGA-based Capsulator

IV. EXPERIMENTATION
First, we tested NetFPGA-based hardware Capsulator using

iperf [14] program for various TCP MSS (maximum segment
size) on the local testbed topology as shown in Fig. 6. The
throughput can be greatly enhanced compared to the user-level
software Capsulator as shown in Fig. 6.

(a) Topology

(b) Test results

Figure 6. Local testbed topology and performance results

V. CONCLUSION
In this paper, we introduced flow-based Openflow protocol

and Future Internet testbed using programmable NetFPGA
system. We implemented hardware Capsulator for MAC-in-IP

tunneling to interconnect separate local Openflow testbeds. Our
NetFPGA-based hardware Capsulator shows enhanced
performance compared to the user-level software-based
Capsulator.

We also deployed programmable service composition
network and applied QoS routing based on user requirements
and network status. According to the QoS routing algorithm,
optimal routing path of each slice can be calculated using user
service profile and network monitoring components.

We’ll deploy MediaX Library for developing media-
oriented component service using this testbed. For MediaX
Library service, Capture/Display library for heterogeneous
input/output device, communication library for flexible media
contents and component service module for compressing,
decompressing, mixing, tiling and display services will be
developed. We believe that our suggested controller application
can be effectively used for providing these dynamic service
compositions and guaranteed video streaming services.

ACKNOWLEDGMENT
This paper is one of results from the project (2009-F-050-

01), “Development of the core technology and virtualized
programmable platform for Future Internet” that is sponsored
by MKE and KCC. We’d like to express our gratitude for the
concerns to support for the research and development of the
project.

REFERENCES
[1] GENI: Global Environment for Network Innovations,

http://www.geni.net/
[2] FIRE: Future Internet Research and Experimentation,

http://cordis.europa.eu/fp7/ict/fire/
[3] Shuji Esaki, Akira Kurokawa, and Kimihide Matsumoto, “Overview of

the Next Generation Network,” NTT Technical Review, Vol.5, No.6,
June 2007.

[4] Jinho Hahm, Bongtae Kim, and Kyungpyo Jeon, “The study of Future
Internet platfom in ETRI”, The Magazine of the IEEK, Vol.36, No.3,
March, 2009.

[5] KOREN: Korea Advanced Research Network,
http://koren2.kr/koren/eng/

[6] G. Adam Covington, Glen Gibb, John Lockwood, and Nick McKeown,
“A Packet Generator on the NetFPGA Platform”, IEEE Symposium on.
Field-Programmable Custom Computing Machines (FCCM), April 2009

[7] http://www.openflowswitch.org
[8] J. Van der merwe and C. Kalmanek, “Network programmability is the

answer! What was the question again? Or, is there really a case for
network programmability?”, in Proc. Workshop on Programmable
Routers for the Extensible Services of TOmorrow (PRESTO), May 2007.

[9] K. Nahrstedt and W.-T Balke, “A taxonomy for multimedia service
compostion,” in Proc. of ACM Multimedia’04, Oct. 2004.

[10] R. Branden, T. Faber, and M. Handley, “From protocol stack to protocol
heap - Role-Based Architecture,” in Proc. of 1st Workshop on Hot
Topics in Networking (Hotnets-1), Oct. 2002.

[11] R. Dutta, G. N. Rouskas, I. Baldine, A. Bragg, and D. Stevenson, “The
SILO architecture for Service Integration, controL, and Optimization for
the Future Internet,” in Proc. of IEEE International Conference on
Communications (ICC’07), Jun. 2007.

[12] S. Ganapathy and T. Wolf, “Design of a network service architecture,”
in Proc. of 16th IEEE International Conference on Computer
Communications and Networks (ICCCN’07), Aug. 2007.

[13] http://www.openflowswitch.org/wk/index.php/ENVI_Extension_-
_Tutorial

[14] iperf, http://sourceforge.net/projects/iperf/

