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Abstract— Future Internet testbed project called FiRST has been 
started in Korea, where separated testbeds consisting of 
NetFPGA-based OpenFlow switches are connected to Korea 
research networks. This testbed will be used for researchers for 
testing new ideas and innovative protocols of Future Internet. To 
interconnect separated testbeds, user’s layer 2 frames from one 
local testbed should be encapsulated at the sending OpenFlow 
switch and tunneled to the destination OpenFlow switch. In this 
project, we implemented NetFPGA-based OpenFlow Capsulator 
module and tested its performance. This hardware Capsulator 
shows enhanced performance compared to the user-level 
software Capsulator. On the given testbed network, we deployed 
programmable service composition and QoS routing function at 
the OpenFlow controller based on user requirements and 
network status. According to the QoS routing algorithm, optimal 
routing path can be calculated using service requirements table 
and network monitoring components. We believe that our 
suggested controller application can be effectively used for 
providing dynamic service composition and guaranteed video 
streaming services. 
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I.  INTRODUCTION  
Future Internet has been a major issue for several years to 

enhance current Internet and support upcoming future 
applications. There are a number of interesting researches such 
as GENI [1], FP7 FIRE [2] and NwGN [3]. These are mainly 
focused on future Internet architecture and related testbeds to 
evaluate new protocols. Future Internet testbed requires some 
advanced concept, such as programmability, virtualization, 
end-to-end slice, federation, and network resource management. 
Virtualized programmable testbed makes it easy for researchers 
to apply new ideas or innovative new protocols. 

A large-scale testbed project in Korea is named 
FiRST(Future Internet Research for Sustainable Testbed)[4], in 
which platforms based on NetFPGA-based OpenFlow switches 
are deployed and new service operation and control framework 
on dynamic virtualized slices is applied. We deployed four 
separated testbeds consisting of NetFPGA-based OpenFlow 

switches and connect these testbed to KOREN (Korea 
Advanced Research Network) [5]. 

To make an overlay network on the KOREN, user’s layer 2 
frames from one local testbed should be encapsulated at the 
sending OpenFlow switch and tunneled to the destination 
OpenFlow switch. To do this, we implemented NetFPGA-
based Capsulator module and tested its performance. This 
Capsulator shows enhanced performance compared to the user-
level software Capsulator.  

On the given testbed networks, we deployed programmable 
service composition network and applied QoS routing based on 
user requirements and network status. QoS routing algorithm 
can calculate optimal routing path using service requirements 
table and network monitoring components. According to our 
service scenario, a user sends service requirements to 
OpenFlow controller first and records them in the table. Later, 
when a new packet arrives at the OpenFlow switch, it is 
forwarded to the controller. The controller examines the packet 
and applies QoS routing algorithm based on the service 
requirement and network conditions such as available 
bandwidth or network congestion status. OpenFlow controller 
inserts forwarding entries in the switch and afterwards packets 
will be processed according to the forwarding table. This table 
will be changed by OpenFlow controller whenever topology or 
network status changes. 

We’ll first introduce basic concept of NetFPGA module 
and OpenFlow protocol. After that, we’ll explain testbed 
architecture and QoS routing control framework. Lastly, we’ll 
show the implemented NetFPGA-based hardware Capsulator 
module and its performance. 

II. RELATED WORK 
In this Section, we first introduce NetFPGA platform and 

OpenFlow protocol. Then, we explain service composition 
related research activities. 



A. NetFPGA Platform 
The NetFPGA platform is a network hardware accelerator 

that can handle packet processing at line rate without CPU 
participation. The gateware of the NetFPGA is designed in a 
modular fashion to allow users to modify or reconfigure 
modules to implement other useful devices. Fig. 1 shows the 
NetFPGA pipeline which consists of eight receive queues, 
eight transmit queues, and user data path which includes input 
arbiter, output port lookup and output queues [6].  

We can develop and add our modules to the user data path 
appropriately. The register interface allows software programs 
running on the host to exchange data with hardware module. 

  

Figure 1.  NetFPGA Reference Pipeline 

B. OpenFlow Switch 
OpenFlow provides an open protocol to program the flow 

table in various switches and routers. OpenFlow controller can 
add or delete forwarding entries in the switch, so packets are 
forwarded according to the centralized controller’s decision. 
The OpenFlow switch classifies packets into flows based on 
10-tuple to find the appropriate actions associated with the flow. 
An OpenFlow switch consists of a Flow Table, Secure Channel 
to the remote controller and OpenFlow protocol [7]. 

All the intelligence of network traffic control resides in the 
controller and dedicated OpenFlow switch is a dumb datapath 
element that forwards between ports as ordered by the 
controller. Experimenters might control the complete network 
of OpenFlow switches and run multiple independent 
experiments on different sets of flows. 

C. Service Composition 
Service composition is a way of building a new application 

by composing existing component services. It allows efficient 
provisioning and improved reusability of components in 
building applications. Although service composition was a 
concept originally researched in the Web community, today it 
is utilized by a variety of communities. Multimedia community 
builds large scale multimedia systems via service composition 
[8]. In networking community, new networking architectures 
are introduced which composes network functions to form new 
protocols and services [9]. RBA [10] and SILO [11] organize 
communications by composing functional blocks. Also, 
Ganapathy et al. [12] encompass functions that are typically 
placed on end-systems and on routers. 

III. NETFPGA/OPENFLOW-BASED PROGRAMMABLE 
NETWORK  

In this section, we explain NetFPGA/OpenFlow-based 
programmable network architecture and implemented 
functional elements in detail. They are GUI for network and 
flow visualization, QoS routing control module and NetFPGA-
based hardware-accelerated Capsulator. 

 

Figure 2.  Overall testbed architecture 

A. Overall Architecture 
Network substrate consists of interconnections between 

NetFPGA/OpenFlow switches as shown in Fig. 2. If users 
sends networking requirements, OpenFlow controller builds 
programmable network using network programmability 
functions to satisfy those requirements. Programmable network 
can be provided by composing flow’s route dynamically. For 
example, packets can be routed via designated node for a 
specific service or light loaded path based on their priority. The 
way for providing programmable network is to make minimum 
spanning tree between all the OpenFlow switches, to make a 
tree for satisfying the QoS metrics, or to make traffic route 
manually by user’s control over the network resources. To 
make an overlay network on the KOREN, tunneling between 
OpenFlow switches are implemented by using NetFPGA-based 
Capsulator. 

B. GUI for Network and Flow Visualization 
To visualize flows over the OpenFlow network connection 

and to control the flow’s path manually, we implemented GUI 
on the OpenFlow controller by extending ENVI.  

C. QoS Routing Control Framwork 
QoS routing control framework is an essential part to 

provide an experimental environment that guarantees QoS for 
experimenters in Future Internet testbed. When the 
experimenter performs service composition experiment on 
OpenFlow testbed, the experimenter may request a slice with 



service requirement such as bandwidth, delay and computing 
power. As a result, the slice can be consist of nodes that have 
an ability to perform service composition, and the slices can 
work independently each other. Thus, service requirement can 
be sufficiently satisfied during total service time, and then the 
routing path with satisfying the service requirement is 
dynamically computed. 

The proposed QoS routing control framework is illustrated 
in Fig. 3. QoS routing control framework can be divided into 
four components: ENVI, LAVI, Network monitoring 
component and QoS routing component. ENVI (Extensible 
network visualization & control framework) [13] is developed 
to visualize OpenFlow network situation. The experimenter is 
able to check the status of link connection on its own slice via 
ENVI in real time. LAVI which is one of NOX components 
plays a role as a backend server of ENVI. ENVI and LAVI 
exchange OpenFlow network information through secure 
channel. ENVI sends service requirements to LAVI in NOX 
controller, and then LAVI delivers this information to QoS 
routing component. Network monitoring component observes 
network conditions such as available bandwidth, link delay, 
packet loss and queue status of each OpenFlow switch in real 
time, and then sends this information to QoS routing 
component periodically. QoS routing component dynamically 
computes the optimal routing path based on both service 
requirements by experimenter and network conditions of all 
OpenFlow switches. In other words, QoS routing component 
finds routing path to satisfy service requirement of all slices 
under time-varying network condition, and then updates flow 
table of corresponding OpenFlow switch by QoS routing 
information. 

 

 

Figure 3.  QoS routing control framework 

D. NetFPGA-based hardware-accerelated Capsulator 
We deployed separated local testbeds at four sites(Seoul, 

Daejeon, Gwangju, Pohang) using NetFPGA-based OpenFlow 
switches and applied tunneling scheme to forward OpenFlow 
frames intact from one OpenFlow site to another OpenFlow 
site through the KOREN because there are no OpenFlow aware 
nodes now in the KOREN. We implemented NetFPGA-based 
Capsulator for high throughput MAC-in-IP encapsulation. 

Since user data path between hardware logics is 64-bits 
wide running, we made 64-bits IP encapsulation header format 
as shown in Fig. 4. Source (destination) IP address is set as 
transmitting (receiving) capsulator’s IP address. The easiest 
way to get a MAC address of gateway which is connected to 
OpenFlow switch is to set register manually using CLI 
(Command Line Interface). But, it cannot support automatic 
and dynamic topology configuration because user has to input 
MAC address information whenever topology changes. To 
support automatic MAC address table construction, we 
implemented new application using shell script and JAVA-
based GUI as follows. For this, NetFPGA-based OpenFlow 
switch is connected to the same gateway from both NIC and 
NetFPGA cards as shown in Fig. 5 and kernel-level ARP table 
is used as follows. 

(1) Obtain gateway MAC address by looking up ARP 
table of kernel-level OS. 

(2) Fill the register of NetFPGA-based OpenFlow switch 
using obtained gateway MAC address and user-input 
network information 

(3) Download OpenFlow_capsulator bit file and load 
OpenFlow kernel module using insmode command. 

(4) Run script for OpenFlow switch operation. 

Also, for proper ARP operation, if the ARP request frame is 
received at the Capsulator from gateway on KOREN, it should 
be delivered to the OS kernel or processed in the NetFPGA 
module internally. Currently, kernel-level OS ARP operation 
cannot be supported, so we implemented internal ARP 
processing logic in the NetFPGA as follows. 

(1) Using register interface, enter MAC and IP address of 
Capsulator for ARP reply. 

(2) After monitoring an entered frame at the Capsulator’s 
port, check if it is an ARP request or not by comparing 
MAC frame type and destination. If it is an ARP 
request, activate arp flag and record MAC and IP 
address. 

(3) If the arp flag is set to 1, ARP reply frame is made 
using an entered MAC and IP information and 
transmitted to the Capsulator port. 

 

Figure 4.  Encapsulation header format 



 

Figure 5.  User data path of NetFPGA-based Capsulator  

IV. EXPERIMENTATION 
First, we tested NetFPGA-based hardware Capsulator using 

iperf [14] program for various TCP MSS (maximum segment 
size) on the local testbed topology as shown in Fig. 6. The 
throughput can be greatly enhanced compared to the user-level 
software Capsulator as shown in Fig. 6. 

 

(a) Topology 

 

(b) Test results 

Figure 6.  Local testbed topology and performance results 

V. CONCLUSION 
In this paper, we introduced flow-based Openflow protocol 

and Future Internet testbed using programmable NetFPGA 
system. We implemented hardware Capsulator for MAC-in-IP 

tunneling to interconnect separate local Openflow testbeds. Our 
NetFPGA-based hardware Capsulator shows enhanced 
performance compared to the user-level software-based 
Capsulator. 

We also deployed programmable service composition 
network and applied QoS routing based on user requirements 
and network status. According to the QoS routing algorithm, 
optimal routing path of each slice can be calculated using user 
service profile and network monitoring components. 

We’ll deploy MediaX Library for developing media-
oriented component service using this testbed. For MediaX 
Library service, Capture/Display library for heterogeneous 
input/output device, communication library for flexible media 
contents and component service module for compressing, 
decompressing, mixing, tiling and display services will be 
developed. We believe that our suggested controller application 
can be effectively used for providing these dynamic service 
compositions and guaranteed video streaming services. 
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